Publications

Export 238 results:
Sort by: Author [ Title  (Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
W
López-Duarte, PC, Carson HS, Cook GS, Fodrie JF, Becker BJ, DiBacco C, Levin LA.  2012.  What controls connectivity? An empirical, multi-species approach Integrative and Comparative Biology. 52:511-524.   10.1093/icb/ics104   AbstractWebsite

The exchange of individuals among habitat patches (connectivity) has broad relevance for the conservation and management of marine metapopulations. Elemental fingerprinting-based research conducted over the past 12 years along the open coastline and bays of San Diego County in southern California evaluated connectivity patterns for seven species: one native and two invasive mussels, an oyster, a brachyuran crab, and two fishes. The studies spanned different years and seasons but overlapped considerably in space, allowing comparisons of dispersal patterns across species, and assessment of the relative importance of location, circulation, and intra-annual and inter-annual variability. We asked whether the species exhibited commonalities in directional transport, transport distances, sources and sinks, self-recruitment, and bay-ocean exchange. Linked connectivity-demographic analyses conducted for two species of mytilid mussels and two fishes allowed evaluation of the contributions of realized connectivity to metapopulation dynamics relative to other life-history attributes. Common trends across species include average along-shore dispersal distances of 15–35 km and seasonal changes in direction of dispersal that mirrored patterns of along-shore circulation. We observed greater isolation of back-bay populations, significant exchange from front bay to ocean, and high self-recruitment in locations on the northern, open coast, and in the southern bays. Connectivity was rarely the most influential driver of growth and persistence of metapopulations, but influenced the importance of other vital rates. Several locations served consistently as sources of larvae or as nurseries for multiple species, but there were few sites in common that were sinks. For the mussels, reproductive timing guided directional transport. These results imply that local management (e.g., habitat protection, opening of the mouths of lagoons, location of aquaculture farms) may be effective along this coastline. Regional, multi-species assessments of exchange of larvae should move us closer to ecosystem-based management.

Moseman-Valtierra, SM, Armaiz-Nolla K, Levin LA.  2010.  Wetland response to sedimentation and nitrogen loading: diversification and inhibition of nitrogen-fixing microbes. Ecological Applications. 20:1556-1568.   10.1890/08-1881.1   AbstractWebsite

Anthropogenic inputs of nutrients and sediment simultaneously impact coastal ecosystems, such as wetlands, especially during storms. Independent and combined effects of sediment and ammonium nitrate loading on nitrogen fixation rates and diversity of microbes that fix nitrogen (diazotrophs) were tested via field manipulations in Spartina foliosa and unvegetated zones at Tijuana Estuary (California, USA). This estuary is subject to episodic nitrogen enrichment and sedimentation associated with rain-driven flooding and slope instabilities, the latter of which may worsen as the Triple Border Fence is constructed along the U.S.-Mexico border. Responses of diazotrophs were assessed over 17 days using acetylene reduction assays and genetic fingerprinting (terminal restriction fragment length polymorphism [T-RFLP]) of nifH, which codes for dinitrogenase reductase. Sulfate-reducing bacteria performed similar to 70% of nitrogen fixation in Spartina foliosa rhizospheres in the absence of nitrogen loading, based on sodium molybdate inhibitions in the laboratory. Following nutrient additions, richness (number of T-RFs [terminal restriction fragments]) and evenness (relative T-RF fluorescence) of diazotrophs in surface sediments increased, but nitrogen fixation rates decreased significantly within 17 days. These responses illustrate, within a microbial community, conformance to a more general ecological pattern of high function among assemblages of low diversity. Diazotroph community composition (T-RF profiles) and rhizosphere diversity were not affected. Pore water ammonium concentrations were higher and more persistent for 17 days in plots receiving sediment additions (1 cm deep), suggesting that recovery of diazotroph functions may be delayed by the combination of sediment and nutrient inputs. Nitrogen fixation constitutes a mechanism for rapid transfer of fixed N to S. foliosa roots and a variety of primary consumers (within 3 and 8 days, respectively), as determined via (15)N(2) enrichment studies with in situ microcosms of intact marsh sediment. Thus, long-term declines in nitrogen fixation rates in response to increasingly frequent nutrient loading and sedimentation may potentially alter nitrogen sources for vascular plants as well as trophic pathways in wetland ecosystems.

V
McCormick, LR, Levin LA, Oesch NW.  2019.  Vision is highly sensitive to oxygen availability in marine invertebrate larvae. Journal of Experimental Biology. 222   10.1242/jeb.200899   AbstractWebsite

For many animals, evolution has selected for complex visual systems despite the high energetic demands associated with maintaining eyes and their processing structures. Therefore, the metabolic demands of visual systems make them highly sensitive to fluctuations in available oxygen. In the marine environment, oxygen changes over daily, seasonal and inter-annual time scales, and there are large gradients of oxygen with depth. Vision is linked to survival in many marine animals, particularly among the crustaceans, cephalopods and fish, and early life stages of these groups rely on vision for prey capture, predator detection and their distribution in the water column. Using in vivo electroretinogram recordings, we show that there is a decrease in retinal sensitivity to light in marine invertebrates when exposed to reduced oxygen availability. We found a 60-100% reduction in retinal responses in the larvae of cephalopods and crustaceans: the market squid (Doryteuthis opalescens), the two-spot octopus (Octopus bimaculatus), the tuna crab (Pleuroncodes planipes) and the graceful rock crab (Metacarcinus gracilis). A decline in oxygen also decreases the temporal resolution of vision in D. opalescens. These results are the first demonstration that vision in marine invertebrates is highly sensitive to oxygen availability and that the thresholds for visual impairment from reduced oxygen are species-specific. Oxygen-impaired retinal function may change the visual behaviors crucial to survival in these marine larvae. These findings may impact our understanding of species' vulnerability to ocean oxygen loss and suggest that researchers conducting electrophysiology experiments should monitor oxygen levels, as even small changes in oxygen may affect the results.

Blankenship, LE, Yayanos AA, Cadien DB, Levin LA.  2006.  Vertical zonation patterns of scavenging amphipods from the Hadal zone of the Tonga and Kermadec Trenches. Deep-Sea Research Part I-Oceanographic Research Papers. 53:48-61.   10.1016/j.dsr.2005.09.006   AbstractWebsite

Deep-sea trenches present an ideal system in which to study vertical zonation, though the difficulties inherent in studying these great depths have thus far deterred such research. Here, we present the first account of the structure and vertical zonation of the scavenging guild residing in the hadal habitat of the Tonga and Kermadec Trenches (SW Pacific Ocean). Four species of scavenging amphipod (Eurythenes gryllus, Scopelocheirus schellenbergi, Hirondellea dubia, and Uristes sp. nov.) were captured with baited free-vehicle traps set 1 m above the seafloor and deployed to bottom depths between 5155 and 10,787 m. Each species occupied a distinct vertical zone of 3.5 km or less, and the scavenging amphipod assemblage vertically partitioned the hadal zone. Scavenging amphipod diversity and evenness sharply declined below 9 km. For S. schellenbergi and H. dubia, population structure was stratified ontogenetically. Early instars appeared to reside exclusively in the shallower depths of each species' vertical zone, and were functionally missing from the median and deeper regions. We captured brooding Uristes sp. nov. females, documenting the first bait-attendance event of brooding amphipods in the hadal zone. Separation of habitat in conjunction with deviations in reproductive traits, behaviors, and nutritional strategies may facilitate the coexistence of these four related species in this harsh and confining habitat. (c) 2005 Elsevier Ltd. All rights reserved.

Smith, CR, Levin LA, Hoover DJ, McMurtry G, Gage JD.  2000.  Variations in bioturbation across the oxygen minimum zone in the northwest Arabian Sea. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 47:227-257.   10.1016/s0967-0645(99)00108-3   AbstractWebsite

Oxygen minimum zones are expected to alter substantially the nature, rates and depths of bioturbation along continental margins, yet these effects remain poorly studied. Using excess (210)Pb profiles, sediment X-radiography and box-core samples for macrofauna, we examined bioturbation processes at six stations (400, 700, 850, 1000, 1250 and 3400 m deep) along a transect across the oxygen minimum zone (OMZ) on the Oman margin. Bottom-water oxygen concentrations ranged from similar to 0.13 mi l(-1) at 400 m to similar to 2.99 mi l(-1) at 3400 m. (210)Pb mixed-layer depth and bioturbation intensity (D(b)) exhibited high within-station variance, and means did not differ significantly among stations. However, the mean mixed-layer depth (4.6 cm) for pooled OMZ stations (400-1000 m depths, 0.13-0.27 mi l(-1) bottom-water oxygen) was half that for stations from similar water depths along well-oxygenated Atlantic and Pacific slopes (11.1 cm), suggesting that oxygen stress reduced (210)Pb mixing depth on the Oman margin. Modal burrow diameter and the diversity of burrow types at a station were highly correlated with bottom-water oxygen concentration from the edge to the core of the Oman OMZ (Spearman's rho greater than or equal to 0.89, p less than or equal to 0.02), suggesting that these parameters are useful proxies for bottom-water oxygen concentrations under dysaerobic conditions. In contrast, neither the maximum diameter and nor the maximum penetration depth of open burrows exhibited oxygen-related patterns along the transect. Reduced (210)Pb mixing depth within the Oman-margin OMZ appeared to result from a predominance of surface-deposit feeders and tube builders within this zone, rather than from simple changes in horizontal or vertical distributions of macrofaunal abundance or biomass. The number of burrow types per station was highly correlated with macrofaunal species diversity, suggesting that burrow diversity may be a good proxy for species diversity in paleo-dysaerobic assemblages. We conclude that bottom-water oxygen concentrations of 0.13-0.27 mi l(-1) substantially alter a number of bioturbation parameters of importance to diagenetic and biofacies models for continental margins. (C) 1999 Elsevier Science Ltd. All rights reserved.

U
Whitcraft, CR, Levin LA, Talley D, Crooks JA.  2008.  Utilization of invasive tamarisk by salt marsh consumers. Oecologia. 158:259-272.   10.1007/s00442-008-1144-5   AbstractWebsite

Plant invasions of coastal wetlands are rapidly changing the structure and function of these systems globally. Alteration of litter dynamics represents one of the fundamental impacts of an invasive plant on salt marsh ecosystems. Tamarisk species (Tamarix spp.), which extensively invade terrestrial and riparian habitats, have been demonstrated to enter food webs in these ecosystems. However, the trophic impacts of the relatively new invasion of tamarisk into marine ecosystem have not been assessed. We evaluated the trophic consequences of invasion by tamarisk for detrital food chains in the Tijuana River National Estuarine Research Reserve salt marsh using litter dynamics techniques and stable isotope enrichment experiments. The observations of a short residence time for tamarisk combined with relatively low C:N values indicate that tamarisk is a relatively available and labile food source. With an isotopic ((15)N) enrichment of tamarisk, we demonstrated that numerous macroinvertebrate taxonomic and trophic groups, both within and on the sediment, utilized (15)N derived from labeled tamarisk detritus. Infaunal invertebrate species that took up no or limited (15)N from labeled tamarisk (A. californica, enchytraeid oligochaetes, coleoptera larvae) occurred in lower abundance in the tamarisk-invaded environment. In contrast, species that utilized significant (15)N from the labeled tamarisk, such as psychodid insects, an exotic amphipod, and an oniscid isopod, either did not change or occurred in higher abundance. Our research supports the hypothesis that invasive species can alter the trophic structure of an environment through addition of detritus and can also potentially impact higher trophic levels by shifting dominance within the invertebrate community to species not widely consumed.

Fodrie, FJ, Levin LA, Lucas AJ.  2009.  Use of population fitness to evaluate the nursery function of juvenile habitats. Marine Ecology-Progress Series. 385:39-49.   10.3354/meps08069   AbstractWebsite

Juveniles of many fish and invertebrate species are able to select among a diverse portfolio of nursery habitat alternatives. Environmental heterogeneity among these habitats generates variation in the vital rates of young individuals that may influence overall population dynamics. Therefore, understanding how these habitat options affect population fitness is crucial for identifying habitats that widen bottlenecks in early life histories and promote population persistence. We used cohort analyses and demographic models to explore the population-level consequences of habitat selection by juvenile California halibut Paralichthys californicus in southern California, focusing on population growth rate (lambda) as a measure of fitness. Although alternative juvenile habitats (exposed coast and coastal embayments) could contribute an approximately equal number of recruits to the adult stock, positive overall population growth (lambda > 1) depended critically on the subpopulations of juveniles that utilized coastal embayments (bays, lagoons, and estuaries). Conversely, the juvenile subpopulation along the exposed coast contributed negatively to overall population growth (lambda < 1) in 3 of the 4 years we conducted this study, due to elevated local mortality in that habitat. Life table response experiments confirmed that juvenile growth and survivorship were responsible for differences in lambda, and that nursery habitat choice could be a key contributor toward overall population fitness. Considering nurseries in a demographic source-sink context could aid conservation efforts by allowing identification or prioritization of the juvenile habitats most critical for population persistence.

Frieder, CA, Gonzalez JP, Levin LA.  2014.  Uranium in larval shells as a barometer of molluscan ocean acidification exposure. Environmental Science & Technology. 48:6401-6408.   10.1021/es500514j   AbstractWebsite

As the ocean undergoes acidification, marine organisms will become increasingly exposed to reduced pH, yet variability in many coastal settings complicates our ability to accurately estimate pH exposure for those organisms that are difficult to track. Here we present shell-based geochemical proxies that reflect pH exposure from laboratory and field settings in larvae of the mussels Mytilus californianus and M. galloprovincialis. Laboratory-based proxies were generated from shells precipitated at pH 7.51 to 8.04. U/Ca, Sr/Ca, and multielemental signatures represented as principal components varied with pH for both species. Of these, U/Ca was the best predictor of pH and did not vary with larval size, with semidiumal pH fluctuations, or with oxygen concentration. Field applications of U/Ca were tested with mussel larvae reared in situ at both known and unknown conditions. Larval shells precipitated in a region of greater upwelling had higher U/Ca, and these U/Ca values corresponded well with the laboratory-derived U/Ca-pH proxy. Retention of the larval shell after settlement in molluscs allows use of this geochemical proxy to assess ocean acidification effects on marine populations.

Larkin, KE, Gooday AJ, Woulds C, Jeffreys RM, Schwartz M, Cowie G, Whitcraft C, Levin L, Dick JR, Pond DW.  2014.  Uptake of algal carbon and the likely synthesis of an "essential" fatty acid by Uvigerina ex. gr. semiornata (Foraminifera) within the Pakistan margin oxygen minimum zone: evidence from fatty acid biomarker and C-13 tracer experiments. Biogeosciences. 11:3729-3738.   10.5194/bg-11-3729-2014   AbstractWebsite

Foraminifera are an important component of benthic communities in oxygen-depleted settings, where they potentially play a significant role in the processing of organic matter. We tracked the uptake of a C-13-labelled algal food source into individual fatty acids in the benthic foraminiferal species Uvigerina ex. gr. semiornata from the Arabian Sea oxygen minimum zone (OMZ). The tracer experiments were conducted on the Pakistan margin during the late/post monsoon period (August-October 2003). A monoculture of the diatom Thalassiosira weisflogii was C-13-labelled and used to simulate a pulse of phytoplankton in two complementary experiments. A lander system was used for in situ incubations at 140m water depth and for 2.5 days in duration. Shipboard laboratory incubations of cores collected at 140 m incorporated an oxystat system to maintain ambient dissolved oxygen concentrations and were terminated after 5 days. Uptake of diatoms was rapid, with a high incorporation of diatom fatty acids into foraminifera after similar to 2 days in both experiments. Ingestion of the diatom food source was indicated by the increase over time in the quantity of diatom biomarker fatty acids in the foraminifera and by the high percentage of C-13 in many of the fatty acids present at the endpoint of both in situ and laboratory-based experiments. These results indicate that U. ex. gr. semiornata rapidly ingested the diatom food source and that these foraminifera will play an important role in the short-term cycling of organic matter within this OMZ environment. The presence of 18:1(n-7) in the experimental foraminifera suggested that U. ex. gr. semiornata also consumed non-labelled bacterial food items. In addition, levels of 20:4(n-6), a PUFA only present in low amounts in the diatom food, increased dramatically in the foraminifera during both the in situ and shipboard experiments, possibly because it was synthesised de novo. This "essential fatty acid" is often abundant in benthic fauna, yet its origins and function have remained unclear. If U. ex. gr. semiornata is capable of de novo synthesis of 20:4(n-6), then it represents a potentially major source of this dietary nutrient in benthic food webs.

Levin, LA, Sibuet M.  2012.  Understanding Continental Margin Biodiversity: A New Imperative. Annual Review of Marine Science, Vol 4. 4( Carlson CA, Giovannoni SJ, Eds.).:79-+., Palo Alto: Annual Reviews   10.1146/annurev-marine-120709-142714   Abstract

Until recently, the deep continental margins (200-4,000 m) were perceived as monotonous mud slopes of limited ecological or environmental concern. Progress in seafloor mapping and direct observation now reveals unexpected heterogeneity, with a mosaic of habitats and ecosystems linked to geomorphological, geochemical, and hydrographic features that influence biotic diversity. Interactions among water masses, terrestrial inputs, sediment diagenesis, and tectonic activity create a multitude of ecological settings supporting distinct communities that populate canyons and seamounts, high-stress oxygen minimum zones, and methane seeps, as well as vast reefs of cold corals and sponges. This high regional biodiversity is fundamental to the production of valuable fisheries, energy, and mineral resources, and performs critical ecological services (nutrient cycling, carbon sequestration, nursery and habitat support). It is under significant threat from climate change and human resource extraction activities. Serious actions are required to preserve the functions and services provided by the deep-sea settings we are just now getting to know.

T
Zapata-Hernandez, G, Sellanes J, Thurber AR, Levin LA.  2014.  Trophic structure of the bathyal benthos at an area with evidence of methane seep activity off southern Chile (similar to 45 degrees S). Journal of the Marine Biological Association of the United Kingdom. 94:659-669.   10.1017/s0025315413001914   AbstractWebsite

Through application of carbon (C) and nitrogen (N) stable isotope analyses, we investigated the benthic trophic structure of the upper-slope off southern Chile (similar to 45 degrees S) including a recent methane seep area discovered as part of this study. The observed fauna comprised 53 invertebrates and seven fish taxa, including remains of chemosymbiotic fauna (e.g. chemosymbiotic bivalves and siboglinid polychaetes), which are typical of methane seep environments. While in close-proximity to a seep, the heterotrophic fauna had a nutrition derived predominantly from photosynthetic sources (delta C-13 > -21 parts per thousand). The absence of chemosynthesis-based nutrition in the consumers was likely a result of using an Agassiz trawl to sample the benthos, a method that is likely to collect a mix of fauna including individuals from adjacent non-seep bathyal environments. While four trophic levels were estimated for invertebrates, the fish assemblage was positioned within the third trophic level of the food web. Differences in corrected standard ellipse area (SEA(C)), which is a proxy of the isotopic niche width, yielded differences for the demersal fish Notophycis marginata (SEA(C) = 5.1 parts per thousand) and Coelorinchus fasciatus (SEA(C) = 1.1 parts per thousand), suggesting distinct trophic behaviours. No ontogenic changes were detected in C. fasciatus regarding food sources and trophic position. The present study contributes the first basic trophic data for the bathyal area off southern Chile, including the identification of a new methane seep area, among the furthest south ever discovered. Such information provides the basis for the proper sustainable management of the benthic environments present along the vast Chilean continental margin.

Maloney, JM, Grupe BM, Pasulka AL, Dawson KS, Case DH, Frieder CA, Levin LA, Driscoll NW.  2015.  Transpressional segment boundaries in strike-slip fault systems offshore southern California: Implications for fluid expulsion and cold seep habitats. Geophysical Research Letters. 42:4080-4088.   10.1002/2015gl063778   AbstractWebsite

The importance of tectonics and fluid flow in controlling cold seep habitats has long been appreciated at convergent margins but remains poorly understood in strike-slip systems. Here we present geophysical, geochemical, and biological data from an active methane seep offshore from Del Mar, California, in the inner California borderlands (ICB). The location of this seep appears controlled by localized transpression associated with a step in the San Diego Trough fault zone and provides an opportunity to examine the interplay between fluid expulsion and restraining step overs along strike-slip fault systems. These segment boundaries may have important controls on seep locations in the ICB and other margins characterized by strike-slip faulting (e.g., Greece, Sea of Marmara, and Caribbean). The strike-slip fault systems offshore southern California appear to have a limited distribution of seep sites compared to a wider distribution at convergent plate boundaries, which may influence seep habitat diversity and connectivity.

Levin, LA, Nittrouer CA.  1987.  Textural characteristics of sediments on deep seamounts in the eastern Pacific Ocean between 10°N and 30°N. Seamounts, islands, and atolls. ( Keating BH, Fryer P, Batiza R, Boehlert GW, Eds.).:187-203., Washington, D.C.: American Geophysical Union Abstract
n/a
Grant, SB, Saphores JD, Feldman DL, Hamilton AJ, Fletcher TD, Cook PLM, Stewardson M, Sanders BF, Levin LA, Ambrose RF, Deletic A, Brown R, Jiang SC, Rosso D, Cooper WJ, Marusic I.  2012.  Taking the "Waste" Out of "Wastewater" for Human Water Security and Ecosystem Sustainability. Science. 337:681-686.   10.1126/science.1216852   AbstractWebsite

Humans create vast quantities of wastewater through inefficiencies and poor management of water systems. The wasting of water poses sustainability challenges, depletes energy reserves, and undermines human water security and ecosystem health. Here we review emerging approaches for reusing wastewater and minimizing its generation. These complementary options make the most of scarce freshwater resources, serve the varying water needs of both developed and developing countries, and confer a variety of environmental benefits. Their widespread adoption will require changing how freshwater is sourced, used, managed, and priced.

S
Robinson, CA, Bernhard JM, Levin LA, Mendoza GF, Blanks JK.  2004.  Surficial hydrocarbon seep infauna from the Blake Ridge (Atlantic Ocean, 2150 m) and the Gulf of Mexico (690-2240 m). Marine Ecology-Pubblicazioni Della Stazione Zoologica Di Napoli I. 25:313-336.   10.1111/j.1439-0485.2004.00034.x   AbstractWebsite

Infauna, including foraminifera and metazoans, were enumerated and identified from five types of seep habitats and two adjacent non-seep habitats. Collections were made with the deep submergence research vessel 'Alvin' from three areas of active seepage in the Gulf of Mexico (Alaminos Canyon [2220 m], Atwater Canyon [1930 m], and Green Canyon lease block 272 [700 m]) and on the Blake Ridge Diapir [2250 m], which is located off the southeastern coast of the United States. The seep habitats sampled included four types of microbial mats (Beggiatoa, Thioploca, thin and thick Arcobacter) and the periphery of a large mussel bed. Sediments under large rhizopod protists, xenophyophores, were sampled adjacent to the mussel bed periphery. A non-seep site, which was >1 km away from active seeps, was also sampled for comparison. Densities of most taxa were higher in the Gulf of Mexico seeps than in Blake Ridge samples, largely because densities in the thick microbial mats of Blake Ridge were significantly lower. Diversity was higher in the Thioploca mats compared to other microbial-mat types. Within an ocean basin (i.e., Atlantic, Gulf of Mexico) we did not observe significant differences in meiofaunal or macrofaunal composition in Beggiatoa versus Thioploca mats or thin versus thick Arcobacter mats. Foraminifera represented up to 16% of the seep community, a proportion that is comparable to their contribution at adjacent non-seep communities. In general, the observed densities and taxonomic composition of seep sites at the genus level was consistent with previous observations from seeps (e.g., the foraminifers Bolivina and Fursenkoina, the dorvilleid polychaete Ophryotrocha).

Janousek, CN, Currin CA, Levin LA.  2007.  Succession of microphytobenthos in a restored coastal wetland. Estuaries and Coasts. 30:265-276. AbstractWebsite

Sediment microphytobenthos, such as diatoms and photosynthetic bacteria, are functionally important components of food webs and are key mediators of nutrient dynamics in marine wetlands. The medium to long-term recovery of benthic microproducers in restored habitats designed to improve degraded coastal wedand sites is largely unknown. Using taxon-specific photopigments, we describe the composition of microphytobenthic communities in a large restoration site in southern California and differences in the temporal recovery of biomass (chlorophyll a), composition, and taxonomic diversity between vegetated Spartina foliosa salt marsh and unvegetated mudflat. Visually distinct, spatially discreet, microphytobenthic patches appeared after no more than 7 mo within the restoration site and were distinguished by significant differences in biomass, taxonomic diversity, and the relative abundance of cyanobacteria versus diatoms. Sediment chlorophyll a concentrations within the restored site were similar to concentrations in nearby natural habitat 0.2-2.2 yr following marsh creation, suggesting rapid colonization by microproducers. Restored Spartina marsh very rapidly (between 0.2 and 1.2 yr) acquired microphytobenthic communities of similar composition and diversity to those in natural Spartina habitat, but restored mudflats took at least 1.6 to 2.2 yr to resemble natural mudflats. These results suggest relatively rapid recovery of microphytobenthic communities at the level of major taxonomic groups. Sediment features, such as pore water salinity and Spartina density, explained little variation in microphytobenthic taxonomic composition. Ile data imply that provision of structural heterogeneity in wedand construction (such as pools and vascular plants) might speed development of microproducer communities, but no direct seeding of sediment microfloras may be necessary.

Levin, LA, Talley D, Thayer G.  1996.  Succession of macrobenthos in a created salt marsh. Marine Ecology-Progress Series. 141:67-82.   10.3354/meps141067   AbstractWebsite

Early succession of macrofauna was examined over several years in a created Spartina alterniflora marsh located on the Newport River Estuary, North Carolina, USA. Epifauna and infaunal community structure and composition were compared at 2 elevations in plots planted with S. alterniflora, plots left bare of vegetation and vegetated plots in a nearby natural S, alterniflora marsh. No significant successional differences were observed between vegetated and unvegetated sediments in the created marsh. The earliest stages of colonization involved recruitment by opportunistic estuarine polychaetes: Streblospio benedicti, Capitella spp, and Polydora cornuta. Capitella spp. dominated the macrofauna a month after marsh creation, but thereafter S. benedicti was the most abundant species. During the first few years, the artificial marsh retained early successional characteristics, with S, benedicti, Capitella spp. and turbellarians accounting for 75 to 95% of the total macrofauna. Fiddler crabs were common epifaunal colonists. After 4 yr, species richness increased and dominance by the early colonists diminished. Taxa lacking planktonic larvae and swimming adults were particularly slow to recover in the created marsh, but accounted for over 25% of the infauna by Year 4. Oligochaetes, which comprised over 50% of the fauna in the natural marsh, remained absent or rare in the artificial system throughout the study. Infaunal recovery appears to be more rapid in lower than upper marsh elevations. Although macrofaunal densities and species richness of sediments in the lower created marsh came to resemble those of the natural marsh within 6 mo, species composition and faunal feeding modes did not. These observations suggest there may be significant functional differences between young artificial marshes and older natural marshes. Consideration of the timing of marsh creation, marsh configuration, continuity with natural marshes, seeding of taxa with poor dispersal, and attention to species habitat requirements are recommended to accelerate infaunal colonization of created Spartina marshes.

Lu, WH, Cusack C, Baker M, Wang T, Chen MB, Paige K, Zhang XF, Levin L, Escobar E, Amon D, Yin Y, Reitz A, Neves AAS, O'Rourke E, Mannarini G, Pearlman J, Tinker J, Horsburgh KJ, Lehodey P, Pouliquen S, Dale T, Zhao P, Yang YF.  2019.  Successful blue economy examples with an emphasis on international perspectives. Frontiers in Marine Science. 6   10.3389/fmars.2019.00261   AbstractWebsite

Careful definition and illustrative case studies are fundamental work in developing a Blue Economy. As blue research expands with the world increasingly understanding its importance, policy makers and research institutions worldwide concerned with ocean and coastal regions are demanding further and improved analysis of the Blue Economy. Particularly, in terms of the management connotation, data access, monitoring, and product development, countries are making decisions according to their own needs. As a consequence of this lack of consensus, further dialogue including this cases analysis of the blue economy is even more necessary. This paper consists of four chapters: (I) Understanding the concept of Blue Economy, (II) Defining Blue economy theoretical cases, (III) Introducing Blue economy application cases and (IV) Providing an outlook for the future. Chapters (II) and (III) summarizes all the case studies into nine aspects, each aiming to represent different aspects of the blue economy. This paper is a result of knowledge and experience collected from across the global ocean observing community, and is only made possible with encouragement, support and help of all members. Despite the blue economy being a relatively new concept, we have demonstrated our promising exploration in a number of areas. We put forward proposals for the development of the blue economy, including shouldering global responsibilities to protect marine ecological environment, strengthening international communication and sharing development achievements, and promoting the establishment of global blue partnerships. However, there is clearly much room for further development in terms of the scope and depth of our collective understanding and analysis.

Gallo, ND, Cameron J, Hardy K, Fryer P, Bartlett DH, Levin LA.  2015.  Submersible- and lander-observed community patterns in the Mariana and New Britain trenches: Influence of productivity and depth on epibenthic and scavenging communities. Deep-Sea Research Part I-Oceanographic Research Papers. 99:119-133.   10.1016/j.dsr.2014.12.012   AbstractWebsite

Deep-sea trenches remain one of the least explored ocean ecosystems due to the unique challenges of sampling at great depths. Five submersible dives conducted using the DEEPSEA CHALLENGER submersible generated video of undisturbed deep-sea communities at bathyal (994 m), abyssal (3755 m), and hadal (8228 m) depths in the New Britain Trench, bathyal depths near the Ulithi atoll (1192 m), and hadal depths in the Mariana Trench Challenger Deep (10908 m). The New Britain Trench is overlain by waters with higher net primary productivity (similar to 3-fold) than the Mariana Trench and nearby Ulithi, and receives substantially more allochthonous input from terrestrial sources, based on the presence of terrestrial debris in submersible video footage. Comparisons between trenches addressed how differences in productivity regime influence benthic and demersal deep-sea community structure. In addition, the scavenger community was studied using paired lander deployments to the New Britain (8233 m) and Mariana (10918 m) trenches. Differences in allochthonous input were reflected in epibenthic community abundance, biodiversity, and lifestyle representation. More productive locations were characterized by higher faunal abundances (similar to 2-fold) at both bathyal and hadal depths. In contrast, biodiversity trends showed a unimodal pattern with more food-rich areas exhibiting reduced bathyal diversity and elevated hadal diversity. Hadal scavenging communities exhibited similar higher abundance but also similar to 3-fold higher species richness in the more food-rich New Britain Trench compared to the Mariana Trench. High species- and phylum-level diversity observed in the New Britain Trench suggest that trench environments may foster higher megafaunal biodiversity than surrounding abyssal depths if food is not limiting. However, the absence of fish at our hadal sites suggests that certain groups do have physiological depth limits. Submersible video footage allowed novel in situ observation of holothurian orientation, jellyfish feeding behavior as well as lifestyle preferences for substrate, seafloor and overlying water. This study documents previously unreported species in the New Britain Trench, including an ulmariid scyphozoan (8233 m) and an acrocirrid polychaete (994 m), and reports the first observation of an abundant population of elpidiid holothurians in the Mariana Trench (10908 m). It also provides the first megafaunal community analysis of the world's deepest epibenthic community in the Mariana Trench Challenger Deep, which was composed of elpidiid holothurians, amphipods, and xenophyophores. (C) 2015 The Authors. Published by Elsevier Ltd.

Ramirez-Llodra, E, Trannum HC, Evenset A, Levin LA, Andersson M, Finne TE, Hilario A, Flem B, Christensen G, Schaanning M, Vanreusel A.  2015.  Submarine and deep-sea mine tailing placements: A review of current practices, environmental issues, natural analogs and knowledge gaps in Norway and internationally. Marine Pollution Bulletin. 97:13-35.   10.1016/j.marpolbul.2015.05.062   AbstractWebsite

The mining sector is growing in parallel with societal demands for minerals. One of the most important environmental issues and economic burdens of industrial mining on land is the safe storage of the vast amounts of waste produced. Traditionally, tailings have been stored in land dams, but the lack of land availability, potential risk of dam failure and topography in coastal areas in certain countries results in increasing disposal of tailings into marine systems. This review describes the different submarine tailing disposal methods used in the world in general and in Norway in particular, their impact on the environment (e.g. hyper-sedimentation, toxicity, processes related to changes in grain shape and size, turbidity), current legislation and need for future research. Understanding these impacts on the habitat and biota is essential to assess potential ecosystem changes and to develop best available techniques and robust management plans. (C) 2015 Elsevier Ltd. All rights reserved.

Parker, ED, Forbes VE, Nielsen SL, Ritter C, Barata C, Baird DJ, Admiraal W, Levin L, Loeschke V, Lyytikainen-Saarenmaa P, Hogh-Jensen H, Calow P, Ripley BJ.  1999.  Stress in ecological systems. Oikos. 86:179-184.   10.2307/3546584   AbstractWebsite
n/a
Dunn, DC, Vandover CL, Etter RJ, Smith CR, Levin LA, Morato T, Colaco A, Dale AC, Gebruk AV, Gjerde KM, Halpin PN, Howell KL, Johnson D, Perez JAA, Ribeiro MC, Stuckas H, Weaver P, Participants SW.  2018.  A strategy for the conservation of biodiversity on mid-ocean ridges from deep-sea mining. Science Advances. 4   10.1126/sciadv.aar4313   AbstractWebsite

Mineral exploitation has spread from land to shallow coastal waters and is now planned for the offshore, deep seabed. Large seafloor areas are being approved for exploration for seafloor mineral deposits, creating an urgent need for regional environmental management plans. Networks of areas where mining and mining impacts are prohibited are key elements of these plans. We adapt marine reserve design principles to the distinctive biophysical environment of mid-ocean ridges, offer a framework for design and evaluation of these networks to support conservation of benthic ecosystems on mid-ocean ridges, and introduce projected climate-induced changes in the deep sea to the evaluation of reserve design. We enumerate a suite of metrics to measure network performance against conservation targets and network design criteria promulgated by the Convention on Biological Diversity. We apply these metrics to network scenarios on the northern and equatorial Mid-Atlantic Ridge, where contractors are exploring for seafloor massive sulfide (SMS) deposits. A latitudinally distributed network of areas performs well at (i) capturing ecologically important areas and 30 to 50% of the spreading ridge areas, (ii) replicating representative areas, (iii) maintaining along-ridge population connectivity, and (iv) protecting areas potentially less affected by climate-related changes. Critically, the network design is adaptive, allowing for refinement based on new knowledge and the location of mining sites, provided that design principles and conservation targets are maintained. This framework can be applied along the global mid-ocean ridge system as a precautionary measure to protect biodiversity and ecosystem function from impacts of SMS mining.

Thurber, AR, Kroger K, Neira C, Wiklund H, Levin LA.  2010.  Stable isotope signatures and methane use by New Zealand cold seep benthos. Marine Geology. 272:260-269.   10.1016/j.margeo.2009.06.001   AbstractWebsite

The carbon isotopic composition of seep faunal tissue represents a time-integrated view of the interaction between biology and the biogeochemical gradients within the environment. Here we provide an initial description of carbon and nitrogen stable isotope signatures of dominant symbiont-bearing megafauna and heterotrophic mega- and macrofauna from 10 methane-seep sites on the continental margin of the North Island of New Zealand (662-1201 m water depth). Isotopic signatures suggest that sulfide oxidation supports symbiont-bearing taxa including solemyid and vesicomyid bivalves, and methanotrophic symbionts are present in the seep mussel Bathymodiolus sp Multiple species of Frenulata (Siboglinidae) are present and have a range of isotopic values that are indicative of both thiotroph- and methanotroph-based nutrition. Isotopic composition of the tubeworm Lamellibrachia sp. varied by 23 3 parts per thousand among individuals although there was no consistent difference among sites Variation in methane use by heterotrophic fauna appears to reflect the availability of hard vs. soft substrate, macrofauna on hard substrates had high delta(13)C signatures, reflecting consumption of photosynthetic-derived organic matter Two unique, biotic assemblages were discovered to be fueled largely by methane: a hard-substrate, multi-phyla sponge-associated community (inhabiting the sponge Pseudosuberites sp) and a soft-sediment assemblage dominated by ampharetid polychaetes Isotope signatures yield estimates of 38-100% and 6-100% methane-derived carbon in sponge associates and ampharetid-bed macrofauna. respectively. These estimates are comparable to those made for deeper methane seeps at the Florida Escarpment (3290 m) and Kodiak. Alaska seeps (4445 m) The overall high use of methane as a carbon source by both symbiont-bearing and heterotrophic fauna suggests that New Zealand methane seeps are an ideal model system to study the interaction among metazoans, bacteria, archaea, and their resulting effect on methane cycles. (C) 2009 Elsevier B V All rights reserved

Tegner, MJ, Levin LA.  1983.  Spiny lobsters and sea urchins: Analysis of a predator-prey interaction. Journal of Experimental Marine Biology and Ecology. 73:125-150.   10.1016/0022-0981(83)90079-5   AbstractWebsite

Spiny lobsters, Panulirus interruptus (Randall), are important predators of two species of sea urchins, Strongylocentrotus franciscanus (A. Agassiz) and S. purpuratus (Stimpson), which are major herbivores in southern California kelp forest communities. Aquarium experiments indicate that spiny lobsters strongly prefer S. purpuratus over S. franciscanus of comparable test diameter, probably accounting for the higher number of S. purpuratus mortalities observed in the field. Juvenile S. franciscanus (< 60 mm test diameter, TD) are preferred over larger conspecifics, but the smallest S. franciscanus (< 30 mm TD) are protected by association with the adult urchin spine canopy. Mid-sized S. franciscanus too large to fit under the spine canopy are subject to intense predation. All sizes of P. interruptus tested showed a notable reluctance to attack large S. franciscanus (> 90 mm TD) when offered a range of sizes, although the larger lobsters are capable of handling the largest urchins. Relative movement, spine length, test thickness, and gonad weights of sea urchins were examined to evaluate the factors affecting the lobsters' choice of prey, and behavioral responses to lobsters were assessed to determine urchin availability to these predators. The handling problems associated with the long spines of larger S. franciscanus appear to be the major considerations in prey choice despite the much greater potential energy gain from these urchins. Thus predation by spiny lobsters appears to be sufficient to explain the bimodal size-frequency distribution typical of S. franciscanus populations in areas where these predators are common. Heavy fishing pressure on spiny lobsters during this century probably resulted in the release of sea urchin populations and contributed to episodes of destructive urchin grazing observed in the 1950's and subsequent years.

Levin, LA, Ziebis W, Mendoza GF, Growney VA, Tryon MD, Brown KM, Mahn C, Gieskes JM, Rathburn AE.  2003.  Spatial heterogeneity of macrofauna at northern California methane seeps: influence of sulfide concentration and fluid flow. Marine Ecology-Progress Series. 265:123-139.   10.3354/meps265123   AbstractWebsite

Relationships among fluid flow, sulfide concentration, sulfur bacteria and macrofaunal assemblages were examined at methane seeps on the northern California margin, near the mouth of the Eel River (512 to 525 m). Over a 6 mo period, sediments covered with microbial mats exhibited significant but variable outflow of altered fluids, with no flow reversals. This fluid flow was associated with high porewater sulfide concentrations (up to 20 mM) and almost no oxygen penetration of sediments (<0.1 mm). Vesicomya pacifica (clam) bed and non-seep sediments exhibited little net fluid outflow and similar oxygen penetration (3 and 4 mm, respectively); however, sulfide concentrations were higher in subsurface clam-bed sediments (up to 2 mM) than in non-seep sediments (<200 muM). Macrofaunal densities did not differ among the 3 habitats (13 800 to 16 800 ind. m(-2); >300 mum), but biomass and diversity (no. species per core, E(S-100), H') were lower and composition varied in the sulfidic microbial mat sediments relative to clam-bed and non-seep sediments. The community in microbial mat-covered sediments consisted largely (82%) of 6 species in the polychaete family Dorvilleidae, whereas the clam-bed and non-seep microhabitats supported a mixture of annelids, peracarid crustaceans, nemerteans, and mollusks. Vertical microprofiling of sulfide in animal cores indicated that most taxa avoid H2S concentrations >1 mM. However, sulfide-oxidizing filamentous bacteria, dorvilleid polychaetes and bivalves (mainly V. pacifica) exhibited highest densities at sulfide concentrations of 1 to 5 mM sulfide. Horizontal and vertical patterns of sulfide availability have a strong influence on the fine-scale distribution, structure and composition of macrofaunal assemblages inhabiting methane seeps and must be accounted for when characterizing the microbiology and ecology of seep habitats.