Publications

Export 5 results:
Sort by: Author [ Title  (Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T [U] V W X Y Z   [Show ALL]
U
Whitcraft, CR, Levin LA, Talley D, Crooks JA.  2008.  Utilization of invasive tamarisk by salt marsh consumers. Oecologia. 158:259-272.   10.1007/s00442-008-1144-5   AbstractWebsite

Plant invasions of coastal wetlands are rapidly changing the structure and function of these systems globally. Alteration of litter dynamics represents one of the fundamental impacts of an invasive plant on salt marsh ecosystems. Tamarisk species (Tamarix spp.), which extensively invade terrestrial and riparian habitats, have been demonstrated to enter food webs in these ecosystems. However, the trophic impacts of the relatively new invasion of tamarisk into marine ecosystem have not been assessed. We evaluated the trophic consequences of invasion by tamarisk for detrital food chains in the Tijuana River National Estuarine Research Reserve salt marsh using litter dynamics techniques and stable isotope enrichment experiments. The observations of a short residence time for tamarisk combined with relatively low C:N values indicate that tamarisk is a relatively available and labile food source. With an isotopic ((15)N) enrichment of tamarisk, we demonstrated that numerous macroinvertebrate taxonomic and trophic groups, both within and on the sediment, utilized (15)N derived from labeled tamarisk detritus. Infaunal invertebrate species that took up no or limited (15)N from labeled tamarisk (A. californica, enchytraeid oligochaetes, coleoptera larvae) occurred in lower abundance in the tamarisk-invaded environment. In contrast, species that utilized significant (15)N from the labeled tamarisk, such as psychodid insects, an exotic amphipod, and an oniscid isopod, either did not change or occurred in higher abundance. Our research supports the hypothesis that invasive species can alter the trophic structure of an environment through addition of detritus and can also potentially impact higher trophic levels by shifting dominance within the invertebrate community to species not widely consumed.

Fodrie, FJ, Levin LA, Lucas AJ.  2009.  Use of population fitness to evaluate the nursery function of juvenile habitats. Marine Ecology-Progress Series. 385:39-49.   10.3354/meps08069   AbstractWebsite

Juveniles of many fish and invertebrate species are able to select among a diverse portfolio of nursery habitat alternatives. Environmental heterogeneity among these habitats generates variation in the vital rates of young individuals that may influence overall population dynamics. Therefore, understanding how these habitat options affect population fitness is crucial for identifying habitats that widen bottlenecks in early life histories and promote population persistence. We used cohort analyses and demographic models to explore the population-level consequences of habitat selection by juvenile California halibut Paralichthys californicus in southern California, focusing on population growth rate (lambda) as a measure of fitness. Although alternative juvenile habitats (exposed coast and coastal embayments) could contribute an approximately equal number of recruits to the adult stock, positive overall population growth (lambda > 1) depended critically on the subpopulations of juveniles that utilized coastal embayments (bays, lagoons, and estuaries). Conversely, the juvenile subpopulation along the exposed coast contributed negatively to overall population growth (lambda < 1) in 3 of the 4 years we conducted this study, due to elevated local mortality in that habitat. Life table response experiments confirmed that juvenile growth and survivorship were responsible for differences in lambda, and that nursery habitat choice could be a key contributor toward overall population fitness. Considering nurseries in a demographic source-sink context could aid conservation efforts by allowing identification or prioritization of the juvenile habitats most critical for population persistence.

Frieder, CA, Gonzalez JP, Levin LA.  2014.  Uranium in larval shells as a barometer of molluscan ocean acidification exposure. Environmental Science & Technology. 48:6401-6408.   10.1021/es500514j   AbstractWebsite

As the ocean undergoes acidification, marine organisms will become increasingly exposed to reduced pH, yet variability in many coastal settings complicates our ability to accurately estimate pH exposure for those organisms that are difficult to track. Here we present shell-based geochemical proxies that reflect pH exposure from laboratory and field settings in larvae of the mussels Mytilus californianus and M. galloprovincialis. Laboratory-based proxies were generated from shells precipitated at pH 7.51 to 8.04. U/Ca, Sr/Ca, and multielemental signatures represented as principal components varied with pH for both species. Of these, U/Ca was the best predictor of pH and did not vary with larval size, with semidiumal pH fluctuations, or with oxygen concentration. Field applications of U/Ca were tested with mussel larvae reared in situ at both known and unknown conditions. Larval shells precipitated in a region of greater upwelling had higher U/Ca, and these U/Ca values corresponded well with the laboratory-derived U/Ca-pH proxy. Retention of the larval shell after settlement in molluscs allows use of this geochemical proxy to assess ocean acidification effects on marine populations.

Larkin, KE, Gooday AJ, Woulds C, Jeffreys RM, Schwartz M, Cowie G, Whitcraft C, Levin L, Dick JR, Pond DW.  2014.  Uptake of algal carbon and the likely synthesis of an "essential" fatty acid by Uvigerina ex. gr. semiornata (Foraminifera) within the Pakistan margin oxygen minimum zone: evidence from fatty acid biomarker and C-13 tracer experiments. Biogeosciences. 11:3729-3738.   10.5194/bg-11-3729-2014   AbstractWebsite

Foraminifera are an important component of benthic communities in oxygen-depleted settings, where they potentially play a significant role in the processing of organic matter. We tracked the uptake of a C-13-labelled algal food source into individual fatty acids in the benthic foraminiferal species Uvigerina ex. gr. semiornata from the Arabian Sea oxygen minimum zone (OMZ). The tracer experiments were conducted on the Pakistan margin during the late/post monsoon period (August-October 2003). A monoculture of the diatom Thalassiosira weisflogii was C-13-labelled and used to simulate a pulse of phytoplankton in two complementary experiments. A lander system was used for in situ incubations at 140m water depth and for 2.5 days in duration. Shipboard laboratory incubations of cores collected at 140 m incorporated an oxystat system to maintain ambient dissolved oxygen concentrations and were terminated after 5 days. Uptake of diatoms was rapid, with a high incorporation of diatom fatty acids into foraminifera after similar to 2 days in both experiments. Ingestion of the diatom food source was indicated by the increase over time in the quantity of diatom biomarker fatty acids in the foraminifera and by the high percentage of C-13 in many of the fatty acids present at the endpoint of both in situ and laboratory-based experiments. These results indicate that U. ex. gr. semiornata rapidly ingested the diatom food source and that these foraminifera will play an important role in the short-term cycling of organic matter within this OMZ environment. The presence of 18:1(n-7) in the experimental foraminifera suggested that U. ex. gr. semiornata also consumed non-labelled bacterial food items. In addition, levels of 20:4(n-6), a PUFA only present in low amounts in the diatom food, increased dramatically in the foraminifera during both the in situ and shipboard experiments, possibly because it was synthesised de novo. This "essential fatty acid" is often abundant in benthic fauna, yet its origins and function have remained unclear. If U. ex. gr. semiornata is capable of de novo synthesis of 20:4(n-6), then it represents a potentially major source of this dietary nutrient in benthic food webs.

Levin, LA, Sibuet M.  2012.  Understanding Continental Margin Biodiversity: A New Imperative. Annual Review of Marine Science, Vol 4. 4( Carlson CA, Giovannoni SJ, Eds.).:79-+., Palo Alto: Annual Reviews   10.1146/annurev-marine-120709-142714   Abstract

Until recently, the deep continental margins (200-4,000 m) were perceived as monotonous mud slopes of limited ecological or environmental concern. Progress in seafloor mapping and direct observation now reveals unexpected heterogeneity, with a mosaic of habitats and ecosystems linked to geomorphological, geochemical, and hydrographic features that influence biotic diversity. Interactions among water masses, terrestrial inputs, sediment diagenesis, and tectonic activity create a multitude of ecological settings supporting distinct communities that populate canyons and seamounts, high-stress oxygen minimum zones, and methane seeps, as well as vast reefs of cold corals and sponges. This high regional biodiversity is fundamental to the production of valuable fisheries, energy, and mineral resources, and performs critical ecological services (nutrient cycling, carbon sequestration, nursery and habitat support). It is under significant threat from climate change and human resource extraction activities. Serious actions are required to preserve the functions and services provided by the deep-sea settings we are just now getting to know.