Export 26 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L [M] N O P Q R S T U V W X Y Z   [Show ALL]
Hunter, WR, Levin LA, Kitazato H, Witte U.  2012.  Macrobenthic assemblage structure and organismal stoichiometry control faunal processing of particulate organic carbon and nitrogen in oxygen minimum zone sediments. Biogeosciences. 9:993-1006.   10.5194/bg-9-993-2012   AbstractWebsite

The Arabian Sea oxygen minimum zone (OMZ) impinges on the western Indian continental margin between 150 and 1500 m, causing gradients in oxygen availability and sediment geochemistry at the sea floor. Oxygen availability and sediment geochemistry are important factors structuring macrofaunal assemblages in marine sediments. However, relationships between macrofaunal assemblage structure and sea-floor carbon and nitrogen cycling are poorly understood. We conducted in situ C-13:N-15 tracer experiments in the OMZ core (540 m [O-2] = 0.35 mu mol l(-1)) and lower OMZ boundary (800-1100 m, [O-2] = 2.2-15.0 mu mol l(-1)) to investigate how macrofaunal assemblage structure, affected by different oxygen levels, and C:N coupling influence the fate of particulate organic matter. No macrofauna were present in the OMZ core. Within the OMZ boundary, relatively high abundance and biomass resulted in the highest macrofaunal assimilation of particulate organic carbon (POC) and nitrogen (PON) at the lower oxygen 800 m stations ([O-2] = 2.2-2.36 mu mol l(-1)). At these stations the numerically dominant cirratulid polychaetes exhibited greatest POC and PON uptake. By contrast, at the higher oxygen 1100 m station ([O-2] = 15.0 mu mol l(-1)) macrofaunal C and N assimilation was lower, with POC assimilation dominated by one large solitary ascidian. Macrofaunal POC and PON assimilation were influenced by changes in oxygen availability, and significantly correlated to differences in macrofaunal assemblage structure between stations. However, macrofaunal feeding responses were ultimately characterised by preferential organic nitrogen assimilation, relative to their internal C:N budgets.

Neira, C, Mendoza G, Levin LA, Zirino A, Delgadillo-Hinojosa F, Porrachia M, Deheyn DD.  2011.  Macrobenthic community response to copper in Shelter Island Yacht Basin, San Diego Bay, California. Marine Pollution Bulletin. 62:701-717.   10.1016/j.marpolbul.2011.01.027   AbstractWebsite

We examined Cu contamination effects on macrobenthic communities and Cu concentration in invertebrates within Shelter Island Yacht Basin, San Diego Bay, California. Results indicate that at some sites, Cu in sediment has exceeded a threshold for "self defense" mechanisms and highlight the potential negative impacts on benthic faunal communities where Cu accumulates and persists in sediments. At sites with elevated Cu levels in sediment, macrobenthic communities were not only less diverse but also their total biomass and body size (individual biomass) were reduced compared to sites with lower Cu. Cu concentration in tissue varied between species and within the same species, reflecting differing abilities to "regulate" their body load. The spatial complexity of Cu effects in a small marina such as SIYB emphasizes that sediment-quality criteria based solely on laboratory experiments should be used with caution, as they do not necessarily reflect the condition at the community and ecosystem levels. (C) 2011 Elsevier Ltd. All rights reserved.

Levin, LA, Gage JD, Martin C, Lamont PA.  2000.  Macrobenthic community structure within and beneath the oxygen minimum zone, NW Arabian Sea. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 47:189-226.   10.1016/s0967-0645(99)00103-4   AbstractWebsite

Investigations of macrobenthos were carried out within and beneath the oxygen minimum zone (OMZ, < 0.5 ml l(-1)) during Fall 1994 on the Oman margin, NW Arabian Sea. Six stations (400, 700, 850, 1000, 1250 and 3400m) were characterized with respect to macrofaunal abundance, biomass, body size, taxonomic composition, diversity and lifestyles, and the relation of these parameters to environmental conditions. The OMZ (400-1000 m) was dominated by a dense (5818-19,183 ind m(-2)), soft-bodied assemblage consisting largely (86-99%) of surface-feeding polychaetes, Spionids and cirratulids dominated at the 400- and 700-m stations, paraonids and ampharetids at the 850- and 1000-m stations. Molluscs and most crustaceans were common only below the OMZ ( greater than or equal to 1250 m); a species of the amphipod Ampelisca was abundant within the OMZ, however. Both density and biomass were elevated within the OMZ relative to stations below but body size did not differ significantly among stations. The lower OMZ boundary (0.5 ml l(-1)) was not a zone of enhanced macrofaunal standing stock, as originally hypothesized. However, abundance maxima at 700-850m may reflect an oxygen threshold (0.15-0.20 ml l(-1)) above which macrofauna take advantage of organically enriched sediments. Incidence of burrowing and subsurface-deposit feeding increased below the OMZ, Species richness (E[S(100)]), diversity (H') and evenness (J') were lower and dominance (R1D) was higher within than beneath the OMZ. Within-station (between-boxcore) faunal heterogeneity increased markedly below the OMZ. Surface sediment pigment concentrations and oxygen together explained 96-99% of the variance in measures of E[S(100)], H' and J' across the transect; grain size and % TOC did not yield significant regressions. Pigments, assumed to reflect food availability and possibly oxygen effects on organic matter preservation, were negatively correlated with species richness and evenness, and positively correlated with dominance. The reverse was true for water depth. Macrobenthic patterns of calcification and lifestyle within the Oman margin OMZ (0.13-0.3 mi l(-1)) match the dysaerobic biofacies of paleo-environmental reconstruction models. (C) 1999 Elsevier Science Ltd. All rights reserved.

Gallardo, VA, Palma M, Carrasco FD, Gutierrez D, Levin LA, Canete JI.  2004.  Macrobenthic zonation caused by the oxygen minimum zone on the shelf and slope off central Chile. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 51:2475-2490.   10.1016/j.dsr2.2004.07.028   AbstractWebsite

The relationship between macrobenthic (greater than or equal to 300 mum) zonation and the oxygen minimum zone (OMZ: O(2) < 0.5 ml L(-1)) was studied in shelf and slope sediments (122-840 m depth) off Concepcion Bay, central Chile. Four study sites were sampled during March-April 1999 for abiotic factors, macrofaunal density, biomass, mean individual size, and diversity. Within the OMZ (122-206 m), the macrofaunal density was high (16,478-21,381 individuals m(-2)) and 69-89% of the organisms were soft-bodied. Density was highest (21,381 individuals m(-2)), biomass lowest (16.95 g wet weight m-2), and individual size smallest (0.07 mg C individuals) at the shelf break site (206 m). Polychaete worms made up 71% of the total abundance, crustaceans 16%, and mollusks only 2%. Total abundance beneath the OMZ (mid-slope site, similar to840 m) was 49% crustaceans and 43% polychaetes. Although existing literature originally led to the hypothesis that both diversity and biomass within the OMZ would be lower than beneath the OMZ, in the present study this was only true for diversity. Biomass distribution, on the other hand, was concave along the depth gradient; the highest values were near the upper edge of (122 m) and beneath (840 m) the OMZ. Indices of the macrofaunal community structure varied in relation to bottom-water oxygen concentration, chlorophyll-alpha, phaeopigments, and sulfide concentration, but not in relation to grain size, C, N, mud, porosity, redox potential, a bottom-water temperature. (C) 2004 Published by Elsevier Ltd.

Levin, LA, Mendoza GF, Konotchick T, Lee R.  2009.  Macrobenthos community structure and trophic relationships within active and inactive Pacific hydrothermal sediments. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 56:1632-1648.   10.1016/j.dsr2.2009.05.010   AbstractWebsite

Hydrothermal fluids passing through sediments create a habitat hypothesized to influence the community structure of infaunal macrobenthos. Here we characterize the density, biomass, species composition, diversity, distributions, lifestyle, and nutritional sources of macroinfauna in hydrothermal sediments in NE and SW Pacific settings, and draw comparisons in search of faunal attributes characteristic of this habitat. There is increasing likelihood that seafloor massive sulfide deposits, associated with active and inactive hydrothermal venting, will be mined commercially. This creates a growing imperative for a more thorough understanding of the structure, dynamics, and resilience of the associated sediment faunas, and has stimulated the research presented here. Macrobenthic assemblages were studied at Manus Basin (1430-1634 m, Papua New Guinea [PNG]) as a function of location (South Su vs. Solwara 1), and hydrothermal activity (active vs. inactive), and at Middle Valley (2406-2411 m, near Juan de Fuca Ridge) as a function of habitat (active clam bed, microbial mat, hot mud, inactive background sediment). The studies conducted in PNG formed part of the environmental impact assessment work for the Solwara 1 Project of Nautilus Minerals Niugini Limited. We hypothesized that hydrothermally active sites should support (a) higher densities and biomass, (b) greater dominance and lower diversity, (c) a higher fraction of deposit feeders, and (d) greater isotopic evidence for chemosynthetic food sources than inactive sites. Manus Basin macrofauna generally had low density (<1000ind.m(-2)) and low biomass (0.1-1.07gm(-2)), except for the South Su active site, which had higher density (3494ind.m(-2)) and biomass (11.94gm(-2)), greater dominance (R1D=76%), lower diversity and more spatial (between-core) homogeneity than the Solwara 1 and South Su inactive sites. Dominant taxa at Manus Basin were Spionidae (Prionospio sp.) in active sediments, and tanaids and deposit-feeding nuculanoid bivalves in active and inactive sediments. At Middle Valley, hot mud sediments supported few animals (1011 ind m(-2)) and low biomass (1.34g m(-2)), while active clam bed sediments supported a high-density (19,984indm(-2)), high-biomass (4.46gm(-2)), low-diversity assemblage comprised of largely orbiniid and syllid polychaetes. Microbial mat sediments had the most diverse assemblage (mainly orbiniid, syllid, dorvilleid, and ampharetid polychaetes) with intermediate densities (8191 ind m(-2)) and high biomass (4.23 g m(-2)). Fauna at both Manus Basin active sites had heavy delta(13)C signatures (-17 parts per thousand to -13 parts per thousand) indicative of chemosynthetic, TCA-cycle microbes at the base of the food chain. In contrast, photosynthesis and sulfide oxidation appear to fuel most of the fauna at Manus Basin inactive sites (delta(13)C = -29 parts per thousand to -20 parts per thousand) and Middle Valley active clam beds and microbial mats (delta(13)C = -36 parts per thousand to -20 parts per thousand). The two hydrothermal regions, located at opposite ends of the Pacific Ocean, supported different habitats, sharing few taxa at the generic or family level, but both exhibited elevated infaunal density and high dominance at selected sites. Subsurface-deposit feeding and bacterivory were prevalent feeding modes. Both the Manus Basin and Middle Valley assemblages exhibit significant within-region heterogeneity, apparently conferred by variations in hydrothermal activity and associaed biogenic habitats. (C) 2009 Elsevier Ltd. All rights reserved.

Levin, LA, Talley TS, Hewitt J.  1998.  Macrobenthos of Spartina foliosa (Pacific cordgrass) salt marshes in southern California: Community structure and comparison to a Pacific mudflat and a Spartina alterniflora (Atlantic smooth cordgrass) marsh. Estuaries. 21:129-144.   10.2307/1352552   AbstractWebsite

Environmental attributes (vegetation and sediment properties) of and macrofaunal community structure in sediments of five southern California Spartina foliosa marshes (San Diego Bay, Mission Bay, Upper Newport Bay, Bolsa Chica Lagoon, and Anaheim Bay) were examined during October 1994. Macrofaunal densities in Pacific S. foliosa marshes (avg. 122,268 indiv. m(-2) > 300 mu m) were 3 to 10 times higher than observed in Atlantic S. alterniflora and S. anglica marshes. The macrofauna of S. foliosa marshes was composed mainly of enchytraeid, naidid, and tubificid oligochaetes (66%), with the enchytraeids dominant at all sites except Bolsa Chica Lagoon. Polychaetes, insects, and peracarid crustaceans accounted for most of the remaining fauna. Multivariate analyses indicated greatest faunal similarity between the two southernmost marshes (Mission Bay and San Diego Bay), and between Anaheim and Newport Bay marshes, with Bolsa Chica Lagoon exhibiting a distinct assemblage. There were strong positive associations of faunal abundance and composition with percent organic matter and percent open area, and negative associations with percent sand and dry weight of algae. For the vegetated marsh in Mission Bay, faunal comparisons were made with an adjacent mudflat and with a S. alterniflora marsh in North Carolina, USA. The unvegetated mudflat exhibited similar macrofaunal densities but higher species richness than the adjacent Spartina marsh. The macrofaunal assemblage of the Mission Bay S. foliosa marsh differed from that of the Atlantic S. alterniflora marsh and the Pacific mudflat in having a greater proportion of oligochaetes, especially Enchytraeidae, and fewer polychaetes. This study represents the first published description that we are aware of for macrofauna in S. foliosa vegetated marsh sediments. The findings document faunal variation among southern California embayments and suggest that differences in macrobenthic community structure occur between marsh and mudflat habitat as web as between east and west coast Spartina marshes. Observed differences may have significant implications for wetland conservation and restoration efforts.

Raman, AV, Damodaran R, Levin LA, Ganesh T, Rao YKV, Nanduri S, Madhusoodhanan R.  2015.  Macrobenthos relative to the oxygen minimum zone on the East Indian margin, Bay of Bengal. Marine Ecology-an Evolutionary Perspective. 36:679-700.   10.1111/maec.12176   AbstractWebsite

The Bay of Bengal remains one of the least studied of the world's oxygen minimum zones (OMZs). Here we offer a detailed investigation of the macrobenthos relative to oxygen minimum zone [OMZ - DO (dissolved oxygen), concentration <0.5ml1(-1)] at 110 stations off the North East Indian margin (16(0) and 20(0)N) featuring coastal, shelf and slope settings (10-1004m). Macrobenthos (>0.5mm) composition, abundance and diversity were studied in relation to variations in depth, dissolved oxygen, sediment texture and organic carbon. Using multivariate procedures powered by SIMPROF analysis we identified distinct OMZ core sites (depth 150-280m; DO 0.37ml1(-1)) that exhibited dense populations of surface-feeding polychaetes (mean 2188 ind. m(-2)) represented by spionids and cossurids (96%). Molluscs and crustaceans were poorly represented except for ampeliscid amphipods. The lower OMZ sites (DO>0.55mll(-1)) supported a different assemblage of polychaetes (cirratulids, amphinomids, eunicids, orbinids, paraonids), crustaceans and molluscs, albeit with low population densities (mean 343 ind. m(-2)). Species richness [E(S-100)], diversity (Margalef d; H') and evenness (J') were lower and dominance was higher within the OMZ core region. Multiple regression analysis showed that a combination of sand, clay, organic carbon, and dissolved oxygen explained 62-78% of the observed variance in macrobenthos species richness and diversity: E(S-100) and H'. For polychaetes, clay and oxygen proved important. At low oxygen sites (DO <1mll(-1)), depth accounted for most variance. Residual analysis (after removing depth effects) revealed that dissolved oxygen and sediment organic matter influenced 50-62% of residual variation in E(S-100), H' and d for total macrofauna. Of this, oxygen alone influenced up to similar to 50-62%. When only polychaetes were evaluated, oxygen and organic matter explained up to 58-63%. For low oxygen sites, organic matter alone had the explanatory power when dominance among polychaetes was considered. Overall, macrobenthic patterns in the Bay of Bengal were consistent with those reported for other upwelling margins. However, the compression of faunal gradients at shallower depths was most similar to the Chile/Peru margin, and different from the Arabian Sea, where the depth range of the OMZ is two times greater. The Bay of Bengal patterns may take on added significance as OMZs shoal globally.

Levin, LA, McGregor AL, Mendoza GF, Woulds C, Cross P, Witte U, Gooday AJ, Cowie G, Kitazato H.  2013.  Macrofaunal colonization across the Indian margin oxygen minimum zone. Biogeosciences. 10:7161-7177.   10.5194/bg-10-7161-2013   AbstractWebsite

There is a growing need to understand the ability of bathyal assemblages to recover from disturbance and oxygen stress, as human activities and expanding oxygen minimum zones increasingly affect deep continental margins. The effects of a pronounced oxygen minimum zone (OMZ) on slope benthic community structure have been studied on every major upwelling margin; however, little is known about the dynamics or resilience of these benthic populations. To examine the influence of oxygen and phytodetritus on shortterm settlement patterns, we conducted colonization experiments at 3 depths on the West Indian continental margin. Four colonization trays were deployed at each depth for 4 days at 542 and 802 m (transect 1-16 degrees 58 ' N) and for 9 days at 817 and 1147 m (transect 2-17 degrees 31 ' N). Oxygen concentrations ranged from 0.9 mu M (0.02 mLL(-1)) at 542 m to 22 mu M (0.5 mLL(-1) ) at 1147 m. All trays contained local defaunated sediments; half of the trays at each depth also contained C-13/N-15-labeled phytodetritus mixed into the sediments. Sediment cores were collected between 535 m and 1140 m from 2 cross-margin transects for analysis of ambient (source) macrofaunal (> 300 mu m) densities and composition. Ambient macrofaunal densities ranged from 0 ind m(-2) (at 535-542 m) to 7400 ind m(-2), with maximum values on both transects at 700-800 m. Macrofaunal colonizer densities ranged from 0 ind m(-2) at 542 m, where oxygen was lowest, to average values of 142 ind m(-2) at 800 m, and 3074 ind m(-2) at 1147 m, where oxygen concentration was highest. These were equal to 4.3 and 151% of the ambient community at 800 m and 1147 m, respectively. Community structure of settlers showed no response to the presence of phytodetritus. Increasing depth and oxygen concentration, however, significantly influenced the community composition and abundance of colonizing macrofauna. Polychaetes constituted 92.4% of the total colonizers, followed by crustaceans (4.2%), mollusks (2.5%), and echinoderms (0.8%). The majority of colonizers were found at 1147 m; 88.5% of these were Capitella sp., although they were rare in the ambient community. Colonists at 800 and 1147 m also included ampharetid, spionid, syllid, lumbrinerid, cirratulid, cossurid and sabellid polychaetes. Consumption of C-13/N-15-labeled phytodetritus was observed for macrofaunal foraminifera (too large to be colonizers) at the 542 and 802/817 m sites, and by metazoan macrofauna mainly at the deepest, better oxygenated sites. Calcareous foraminifera (Uvigerina, Hoeglundina sp.), capitellid polychaetes and cumaceans were among the major phytodetritus consumers. These preliminary experiments suggest that bottom-water oxygen concentrations may strongly influence ecosystem services on continental margins, as reflected in rates of colonization by benthos and colonizer processing of carbon following disturbance. They may also provide a window into future patterns of settlement on the continental slope as the world's oxygen minimum zones expand.

Hughes, DJ, Lamont PA, Levin LA, Packer M, Feeley K, Gage JD.  2009.  Macrofaunal communities and sediment structure across the Pakistan margin Oxygen Minimum Zone, North-East Arabian Sea. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 56:434-448.   10.1016/j.dsr2.2008.05.030   AbstractWebsite

Benthic macrofauna and sediment column features were sampled at five stations along a bathymetric transect (depths 140, 300, 940, 1200, 1850 m) through the Pakistan margin Oxygen Minimum Zone (OMZ) during the 2003 intermonsoon (March-May) and late-post-monsoon (August-October) periods. Objectives were to compare patterns with those described from other OMZs, particularly the Oman margin of the Arabian Sea, in order to assess the relative influence of bottom-water oxygenation and sediment organic content on macrofaunal standing stock and community structure. Macrofaunal density was highest at the 140-m station subject to monsoon-driven shoaling of the OMZ, but there was no elevation of density at the lower OMZ boundary (1200 m). Numbers was extremely low in the OMZ core (300 m) and were not readily explicable from the environmental data. There was no consistent depth-related trend in macrofaunal biomass. Macrofaunal densities were consistently lower than found off Oman but there was less contrast in biomass. A significant post-monsoon decline in macrofaunal density at 140 m was driven by selective loss of polychaete taxa. Polychaeta was the most abundant major taxon at all stations but did not dominate the macrofaunal community to the extent reported from Oman. Cirratulidae and Spionidae were major components of the polychaete fauna at most stations but Acrocirridae, Ampharetidae, Amphinomidae and Cossuridae were more important at 940 m. Polychaete assemblages at each station were almost completely distinct at the species level. Polychaete species richness was positively correlated with bottom-water dissolved oxygen and negatively correlated with sediment TOC, C:N ratio and total phytopigments. Community dominance showed the opposite pattern. The strongly inverse correlation between oxygen and measures of sediment organic content made it difficult to distinguish their relative effects. The strongly laminated sediments in the OMZ core contrasted with the homogeneous, heavily bioturbated sediments above and below this zone but were associated with minimal macrofaunal biomass rather than distinctive functional group composition. In general, data from the Oman margin were weak predictors of patterns seen off Pakistan, and results suggest the importance of local factors superimposed on the broader trends of macrofaunal community composition in OMZs. (C) 2008 Elsevier Ltd. All rights reserved.

Levin, LA, Blair NE, Martin CM, Demaster DJ, Plaia G, Thomas CJ.  1999.  Macrofaunal processing of phytodetritus at two sites on the Carolina margin: in situ experiments using (13)C-labeled diatoms. Marine Ecology-Progress Series. 182:37-54.   10.3354/meps182037   AbstractWebsite

Tracer experiments using (13)C-labeled diatoms Thalassiosira pseudonana were carried out at two 850 m sites (I off Cape Fear and III off Cape Hatteras) on the North Carolina, USA, slope to examine patterns of macrofaunal consumption of fresh phytodetritus. Experiments examined the influence of taxon, feeding mode, body size and vertical position within the sediment column on access to surficial organic matter. delta(13)C measurements were made on macrofaunal metazoans and agglutinating protozoans from background sediments and from sediment plots in which (13)C-labeled diatoms were deposited and then sampled 0.3 h, 1 to 1.5 d, 3 mo and 14 mo later. Significant between-site differences were observed in background delta(13)C signatures of sediments, metazoans, and large, agglutinating protozoans, with values 2 to 3 parts per thousand lower at Site III than at Site I. Background delta(13)C signatures also varied as a function of taxon and of vertical position in the sediment column at Site III. The background delta(13)C value of carnivores was higher than that of surface-deposit feeders among Site I annelids, but no annelid feeding-group differences were observed at Site III. delta(13)C data from short-term (1 to 1.5 d) experiments revealed rapid diatom ingestion, primarily by agglutinated protozoans and annelids at Site I and mainly by annelids at Site III. Selective feeding on diatoms was exhibited by paraonid polychaetes, especially Aricidea spp. Exceptionally high uptake and retention of diatom C also was observed in the maldanid Praxillella sp., the nereid Ceratocephale sp. and several other surface-deposit feeding polychaetes. After 14 mo, little of the diatom (13)C remained at Site III, but high concentrations of the tracer were present in annelids and agglutinating protozoans at Site I. At both sites, nonannelid metazoans and subsurface-deposit feeding annelids exhibited the least uptake and retention of diatom C. Our hypotheses that large-bodied taxa and shallow-dwelling infauna should have greatest access to freshly deposited organic matter were not borne out. Some small, deep-dwelling taxa acquired label more readily than large or near-surface forms. Differences in tracer fates between sites reflected greater vertical mixing at Site III. These results indicate heterogeneity in benthic processes along the Carolina margin. but suggest that labile organic matter is consumed quickly at both sites. Because most of the taxa found to consume freshly deposited diatoms in these experiments are typical of bathyal settings, we infer that phytodetritus reaching the seabed in margin environments is rapidly processed by protozoan and metazoan components of the benthic fauna.

Neira, C, Mendoza G, Porrachia M, Stransky C, Levin LA.  2015.  Macrofaunal recolonization of copper-contaminated sediments in San Diego Bay. Marine Pollution Bulletin. 101:794-804.   10.1016/j.marpolbul.2015.09.023   AbstractWebsite

Effects of Cu-loading on macrofaunal recolonization were examined in Shelter Island Yacht Basin (San Diego Bay, California). Sediments with high and low Cu levels were defaunated and Cu-spiked, translocated, and then placed back into the environment These demonstrated that the alteration observed in benthic communities associated with Cu contamination occurs during initial recolonization. After a 3-month exposure to sediments with varying Cu levels, two primary colonizing communities were identified: (1) a "mouth assemblage" resembling adjacent background fauna associated with low-Cu levels that was more diverse and predominantly dominated by surface- and subsurface-deposit feeders, burrowers, and tube builders, and (2) a "head assemblage" resembling adjacent background fauna associated with high-Cu concentrations, with few dominant species and an increasing importance of carnivores and mobile epifauna. Cu loading can cause reduced biodiversity and lower structural complexity that may last several months if high concentrations persist, with a direct effect on community functioning. (C) 2015 Elsevier Ltd. All rights reserved.

Talley, TS, Levin LA.  1999.  Macrofaunal succession and community structure in Salicornia marshes of southern California. Estuarine Coastal and Shelf Science. 49:713-731.   10.1006/ecss.1999.0553   AbstractWebsite

Lack of basic understanding of ecosystem structure and function forms a major impediment to successful conservation of coastal ecosystems. This paper provides a description of the fauna and examines faunal succession in Salicornia-vegetated sediments of southern California. Environmental attributes (vegetation and sediment properties) and macrofaunal (animals greater than or equal to 0.3 mm) community structure were examined in sediments of five natural, southern California Salicornia spp. marshes (Tijuana Estuary, San Diego Bay, Mission Bay, Upper Newport Bay and Anaheim Bay) and in created Salicornia marshes 16 months to 10 years in age, located within four of the bays. Oligochaetes and insects were the dominant taxa in both natural (71 to 98% of total fauna) and created (91 to 97%) marshes. In San Diego, Newport and Anaheim Bays, macrofaunal densities were generally higher in the created marshes (88 000 to 290 000 ind m(-2)) than in their natural counterparts (26 000 to 50 000 ind m(-2)). In the youngest system, Mission Bay, the reverse was true (natural: 113 000 vs created: 28 000 ind m-2). Similar species numbers were recorded from the created and adjacent natural marshes. Insects, especially chironomids, dolichopodids, and heleids, as well as the naidid oligochaete, Paranais litoralis, characterize early successional stages. Enchytraeid and tubificid oligochaetes reflect later succession evident in natural and older created marshes. Sediment organic matter (both combustible and below-ground plant biomass) was the environmental variable most commonly associated with densities of various macrofaunal taxa. These relationships were generally negative in the natural marshes and positive in the created marshes. Within-bay comparisons of macrofauna from natural Salicornia- vs Spartina-vegetated habitat in San Diego and Mission Bays revealed lower macrofaunal density (San Diego Bay only), proportionally fewer oligochaetes and more insects, and no differences in species richness in the Salicornia habitat. The oldest created Salicornia marsh (San Diego Bay) exhibited an assemblage intermediate in composition between those of the natural Salicornia- and Spartina-vegetated marshes. These results suggest: (a) faunal recovery following Salicornia marsh creation can require 10 or more years, (b) high macrofaunal variability among bays requires marsh creation reference site selection from within the same bay, and (c) Spartina-based research should not be used for Salicornia marsh management decisions. (C) 1999 Academic Press.

Sweetman, AK, Thurber AR, Smith CR, Levin LA, Mora C, Wei CL, Gooday AJ, Jones DOB, Rex M, Yasuhara M, Ingels J, Ruhl HA, Frieder CA, Danovaro R, Wurzberg L, Baco A, Grupe BM, Pasulka A, Meyer KS, Dunlop KM, Henry LA, Roberts JM.  2017.  Major impacts of climate change on deep-sea benthic ecosystems. Elementa-Science of the Anthropocene. 5:1-23.   10.1525/elementa.203   AbstractWebsite

The deep sea encompasses the largest ecosystems on Earth. Although poorly known, deep seafloor ecosystems provide services that are vitally important to the entire ocean and biosphere. Rising atmospheric greenhouse gases are bringing about significant changes in the environmental properties of the ocean realm in terms of water column oxygenation, temperature, pH and food supply, with concomitant impacts on deep-sea ecosystems. Projections suggest that abyssal (3000-6000 m) ocean temperatures could increase by 1 degrees C over the next 84 years, while abyssal seafloor habitats under areas of deep-water formation may experience reductions in water column oxygen concentrations by as much as 0.03 mL L-1 by 2100. Bathyal depths (200-3000 m) worldwide will undergo the most significant reductions in pH in all oceans by the year 2100 (0.29 to 0.37 pH units). O-2 concentrations will also decline in the bathyal NE Pacific and Southern Oceans, with losses up to 3.7% or more, especially at intermediate depths. Another important environmental parameter, the flux of particulate organic matter to the seafloor, is likely to decline significantly in most oceans, most notably in the abyssal and bathyal Indian Ocean where it is predicted to decrease by 40-55% by the end of the century. Unfortunately, how these major changes will affect deep-seafloor ecosystems is, in some cases, very poorly understood. In this paper, we provide a detailed overview of the impacts of these changing environmental parameters on deep-seafloor ecosystems that will most likely be seen by 2100 in continental margin, abyssal and polar settings. We also consider how these changes may combine with other anthropogenic stressors (e.g., fishing, mineral mining, oil and gas extraction) to further impact deep-seafloor ecosystems and discuss the possible societal implications.

Ramirez-Llodra, E, Tyler PA, Baker MC, Bergstad OA, Clark MR, Escobar E, Levin LA, Menot L, Rowden AA, Smith CR, Vandover CL.  2011.  Man and the last great wilderness: human impact on the deep sea. Plos One. 6   10.1371/journal.pone.0022588   AbstractWebsite

The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life - SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO(2) and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO(2) and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short discussion on protection and management methods.

Ewel, KC, Cressa C, Kneib RT, Lake PS, Levin LA, Palmer MA, Snelgrove P, Wall DH.  2001.  Managing critical transition zones. Ecosystems. 4:452-460.   10.1007/s10021-001-0106-0   AbstractWebsite

Ecosystems that function as critical transition zones (CTZs) among terrestrial, freshwater, and marine habitats are closely connected to the ecosystems adjacent to them and are characterized by a rapid flux of materials and organisms. CTZs play various roles, including mediating water flows, accumulating sediments and organic matter, processing nutrients, and providing opportunities for recreation. They are particularly difficult to manage because they tend to be small, albeit important, components of large watersheds, and managers may not have control over the entire landscape. Moreover, they are often the focus of intensive human activity. Consequently, CTZs are critically important zones, and their preservation and protection are likely to require unique collaboration among scientists, managers, and stakeholders. Scientists can learn a great deal from the study of these ecosystems, taking advantage of small size and the importance of fluxes, but a good understanding of adaptive management strategies is needed to establish a dialogue with managers and stakeholders on technical and management issues. An understanding of risk analysis is also important to help set meaningful goals and establish logical strategies that include all of the interested parties. Successful restoration of a CTZ is the best test of the quality of knowledge about its structure and function. Much has already been learned about coastal CTZs through restoration projects, and the large number of such projects involving riparian CTZs in particular suggests that there is considerable opportunity for fruitful collaborations between scientists and managers.

Neira, C, Grosholz ED, Levin LA, Blake R.  2006.  Mechanisms generating modification of benthos following tidal flat invasion by a Spartina hybrid. Ecological Applications. 16:1391-1404.   10.1890/1051-0761(2006)016[1391:mgmobf];2   AbstractWebsite

Many coastal habitats are being substantially altered by introduced plants. In San Francisco Bay,, California, USA, a hybrid form of the eastern cordgrass Spartina alterniflora is rapidly invading open mudflats in southern and central sections of the Bay, altering habitat, reducing macrofaunal densities, and shifting species composition. The invasion has resulted in significant losses of surface-feeding amphipods, bivalves, and cirratulid polychaetes, while subsurface feeding groups such as tubificid oligochaetes and capitellid polychaetes have been unaffected. In the present paper, we document the causes and mechanisms underlying the changes observed. Through a series of in situ manipulative experiments we examined the influence of hybrid Spartina canopy on a range of physical, chemical, and biological properties. The hybrid Spartina canopy exerted a strong influence on. the hydrodynamic regime, triggering a series of physical, chemical, and biological changes in the benthic system. Relative to tidal flats, water velocity was reduced in hybrid patches, promoting deposition of fine-grained, organic-rich particles. The resulting changes in the sediment environment included increased porewater sulfide concentrations and anoxia, which led to poor survivorship. of surface feeders such as, bivalves, amphipods, and polychaetes. These are key taxa that support higher trophic levels including migratory shorebirds that feed on tidal flats. Altered flow in the Spartina canopy further contributed to changes in barnacle recruitment and resuspension of adult benthic invertebrates. Increased crab-induced predation pressure associated with Spartina invasion also contributed to changes in benthic invertebrate communities. Our results suggest that multiple physical, chemical, biotic, and trophic impacts of the Spartina invasion have resulted in substantial changes in benthic communities that are likely to have important effects on the entire ecosystem.

Neira, C, Sellanes J, Levin LA, Arntz WE.  2001.  Meiofaunal distributions on the Peru margin: relationship to oxygen and organic matter availability. Deep-Sea Research Part I-Oceanographic Research Papers. 48:2453-2472.   10.1016/s0967-0637(01)00018-8   AbstractWebsite

A quantitative study of metazoan meiofauna was carried out on bathyal sediments (305, 562, 830 and 1210 m) along a transect within and beneath the oxygen minimum zone (OMZ) in the southeastern Pacific off Callao, Peru (12 degreesS). Meiobenthos densities ranged from 1517 (upper slope, middle of OMZ) to 440-548 ind. 10cm(-2) (lower slope stations, beneath the OMZ). Nematodes were the numerically dominant meiofaunal taxon at every station, followed by copepods and nauplii. Increasing bottom-water oxygen concentration and decreasing organic matter availability downslope were correlated with observed changes in meiofaunal abundance. The 300-m site, located in the middle of the OMZ, differed significantly in meiofaunal abundance, dominance, and in vertical distribution pattern from the deeper sites. At 305 m, nematodes amounted to over 99% of total meiofauna; about 70% of nematodes were found in the 2-5 cm. interval. At the deeper sites, about 50% were restricted to the top I cm. The importance of copepods and nauplii increased consistently with depth, reaching similar to 12% of the total meiofauna at the deepest site. The observation of high nematode abundances at oxygen concentrations <0.02mll(-1) supports the hypothesis that densities are enhanced by an indirect positive effect of low oxygen involving (a) reduction of predators and competitors and (b) preservation of organic matter leading to high food availability and quality. Food input and quality, represented here by chloroplastic pigment equivalents (CPE) and sedimentary labile organic compounds (protein, carbohydrates and lipids), were strongly, positively correlated with nematode abundance. By way of contrast, oxygen exhibited a strong negative correlation, overriding food availability, with abundance of other meiofauna such as copepods and nauplii. These taxa were absent at the 300-m site. The high correlation of labile organic matter (C-LOM, sum of carbon contents in lipids, proteins and carbohydrates) with CPE (Pearson's r = 0.99, p <0.01) suggests that most of the sedimentary organic material sampled was of phytodetrital origin. The fraction of sediment organic carbon potentially available to benthic. heterotrophs, measured as C-LOM/Total organic carbon, was on average 17% at all stations. Thus, a residual, refractory fraction, constitutes the major portion of organic matter at the studied bathyal sites. (C) 2001 Elsevier Science Ltd. All rights reserved.

Hansman, RL, Thurber AR, Levin LA, Aluwihare LI.  2017.  Methane fates in the benthos and water column at cold seep sites along the continental margin of Central and North America. Deep-Sea Research Part I-Oceanographic Research Papers. 120:122-131.   10.1016/j.dsr.2016.12.016   AbstractWebsite

The potential influence of methane seeps on carbon cycling is a key question for global assessments, but the study of carbon cycling in surface sediments and the water column of cold seep environments is complicated by the high temporal and spatial variability of fluid and gas fluxes at these sites. In this study we directly examined carbon sources supporting benthic and planktonic food webs at venting methane seeps using isotopic and molecular approaches that integrate this variability. At four seep environments located along North and Central America, microorganisms from two size fractions were collected over several days from 2800 to 90501 of seawater to provide a time-integrated measure of key microbial groups and the carbon sources supporting the overall planktonic microbial community. In addition to water column measurements, the extent of seafloor methane release was estimated at two of the sites by examining the stable carbon isotopic signature (delta C-13) of benthic metazoan infauna. This signature reveals carbon sources fueling the base of the food chain and thus provides a metric that represents a time-integrated view of the dominant microbial processes within the sediment. The stable carbon isotopic composition of microbial DNA (delta C-13-DNA), which had values between -17.0 and -19.5%(0), indicated that bulk planktonic microbial production was not ultimately linked to methane or other C-13-depleted seep-derived carbon sources. Instead these data support the importance of organic carbon derived from either photo- or chemoautotrophic CO2 fixation to the planktonic food web. Results of qPCR of microbial DNA sequences coding for a subunit of the particulate methane monooxygenase gene (pmoA) showed that only a small percentage of the planktonic microbial community were potential methane oxidizers possessing pmoA (< 5% of 16S rRNA gene copies). There was an overall decrease of C-13-depleted carbon fueling the benthic metazoan community from 3 to 5 cm below the seafloor to the sediment surface, reflecting limited use of isotopically depleted carbon at the sediment surface. Rare methane emission as indicated by limited aerobic methane oxidation acts to corroborate our findings for the planktonic microbial community.

Case, DH, Pasulka AL, Marlow JJ, Grupe BM, Levin LA, Orphan VJ.  2015.  Methane seep carbonates host distinct, diverse, and dynamic microbial assemblages. Mbio. 6   10.1128/mBio.01348-15   AbstractWebsite

Marine methane seeps are globally distributed geologic features in which reduced fluids, including methane, are advected upward from the subsurface. As a result of alkalinity generation during sulfate-coupled methane oxidation, authigenic carbonates form slabs, nodules, and extensive pavements. These carbonates shape the landscape within methane seeps, persist long after methane flux is diminished, and in some cases are incorporated into the geologic record. In this study, microbial assemblages from 134 native and experimental samples across 5,500 km, representing a range of habitat substrates (carbonate nodules and slabs, sediment, bottom water, and wood) and seepage conditions (active and low activity), were analyzed to address two fundamental questions of seep microbial ecology: (i) whether carbonates host distinct microbial assemblages and (ii) how sensitive microbial assemblages are to habitat substrate type and temporal shifts in methane seepage flux. Through massively parallel 16S rRNA gene sequencing and statistical analysis, native carbonates are shown to be reservoirs of distinct and highly diverse seep microbial assemblages. Unique coupled transplantation and colonization experiments on the seafloor demonstrated that carbonate-associated microbial assemblages are resilient to seep quiescence and reactive to seep activation over 13 months. Various rates of response to simulated seep quiescence and activation are observed among similar phylogenies (e.g., Chloroflexi operational taxonomic units) and similar metabolisms (e.g., putative S oxidizers), demonstrating the wide range of microbial sensitivity to changes in seepage flux. These results imply that carbonates do not passively record a time-integrated history of seep microorganisms but rather host distinct, diverse, and dynamic microbial assemblages. IMPORTANCE Since their discovery in 1984, the global distribution and importance of marine methane seeps have become increasingly clear. Much of our understanding of methane seep microorganisms-from metabolisms to community ecology-has stemmed from detailed studies of seep sediments. However, it has become apparent that carbonates represent a volumetrically significant habitat substrate at methane seeps. Through combined in situ characterization and incubation experiments, this study demonstrates that carbonates host microbial assemblages distinct from and more diverse than those of other seep habitats. This emphasizes the importance of seep carbonates as biodiversity locales. Furthermore, we demonstrate that carbonate-associated microbial assemblages are well adapted to withstand fluctuations in methane seepage, and we gain novel insight into particular taxa that are responsive (or recalcitrant) to changes in seep conditions.

Grupe, BM, Krach ML, Pasulka AL, Maloney JM, Levin LA, Frieder CA.  2015.  Methane seep ecosystem functions and services from a recently discovered southern California seep. Marine Ecology-an Evolutionary Perspective. 36:91-108.   10.1111/maec.12243   AbstractWebsite

The recent discovery of a methane seep with diverse microhabitats and abundant groundfish in the San Diego Trough (1020 m) off the coast of Del Mar, California raised questions about the role of seep ecosystem functions and services in relation to continental margins. We used multicorer and ROV grab samples and an ROV survey to characterize macrofaunal structure, diversity, and trophic patterns in soft sediments and authigenic carbonates; seep microhabitats and taxa observed; and the abundance and spatial patterns of fishery-relevant species. Biogenic microhabitats near the Del Mar Seep included microbially precipitated carbonate boulders, bacterial mats, vesicomyid clam beds, frenulate and ampharetid beds, vestimentiferan tubeworm clumps, and fields of Bathysiphon filiformis tubes. Macrofaunal abundance increased and mean faunal delta C-13 signatures decreased in multicorer samples nearer the seep, suggesting that chemosynthetic production enhanced animal densities outside the seep center. Polychaetes dominated sediments, and ampharetids became especially abundant near microbial mats, while gastropods, hydroids, and sponges dominated carbonate rocks. A wide range of stable isotopic signatures reflected the diversity of microhabitats, and methane-derived carbon was the most prevalent source of nutrition for several taxa, especially those associated with carbonates. Megafaunal species living near the seep included longspine thornyhead (Sebastolobus altivelis), Pacific dover sole (Microstomus pacificus), and lithodid crabs (Paralomis verrilli), which represent targets for demersal fisheries. Sebastolobus altivelis was especially abundant (6.5-8.2 fish.100 m(-2)) and appeared to aggregate near the most active seep microhabitats. The Del Mar Methane Seep, like many others along the world's continental margins, exhibits diverse ecosystem functions and enhances regional diversity. Seeps such as this one may also contribute ecosystem services if they provide habitat for fishery species, export production to support margin food webs, and serve as sinks for methane-derived carbon.

Thurber, AR, Levin LA, Rowden AA, Sommer S, Linke P, Kroger K.  2013.  Microbes, macrofauna, and methane: A novel seep community fueled by aerobic methanotrophy. Limnology and Oceanography. 58:1640-1656.   10.4319/lo.2013.58.5.1640   AbstractWebsite

During the discovery and description of seven New Zealand methane seep sites, an infaunal assemblage dominated by ampharetid polychaetes was found in association with high seabed methane emission. This ampharetid-bed assemblage had a mean density of 57,000 +/- 7800 macrofaunal individuals m(-2) and a maximum wet biomass of 274 g m(-2), both being among the greatest recorded from deep-sea methane seeps. We investigated these questions: Does the species assemblage present within these ampharetid beds form a distinct seep community on the New Zealand margin? and What type of chemoautotrophic microbes fuel this heterotrophic community? Unlike the other macro-infaunal assemblages, the ampharetid-bed assemblage composition was homogeneous, independent of location. Based on a mixing model of species-specific mass and isotopic composition, combined with published respiration measurements, we estimated that this community consumes 29-90 mmol C m(-2) d(-1) of methane-fueled biomass; this is > 290 times the carbon fixed by anaerobic methane oxidizers in these ampharetid beds. A fatty acid biomarker approach supported the finding that this community, unlike those previously known, consumes primarily aerobic methanotrophic bacteria. Due to the novel microbial fueling and high methane flux rates, New Zealand's ampharetid beds provide a model system to study the influence of metazoan grazing on microbially mediated biogeochemical cycles, including those that involve greenhouse gas emissions.

Pasulka, AL, Levin LA, Steele JA, Case DH, Landry MR, Orphan VJ.  2016.  Microbial eukaryotic distributions and diversity patterns in a deep-sea methane seep ecosystem. Environmental Microbiology. 18:3022-3043.   10.1111/1462-2920.13185   AbstractWebsite

Although chemosynthetic ecosystems are known to support diverse assemblages of microorganisms, the ecological and environmental factors that structure microbial eukaryotes (heterotrophic protists and fungi) are poorly characterized. In this study, we examined the geographic, geochemical and ecological factors that influence microbial eukaryotic composition and distribution patterns within Hydrate Ridge, a methane seep ecosystem off the coast of Oregon using a combination of high-throughput 18S rRNA tag sequencing, terminal restriction fragment length polymorphism fingerprinting, and cloning and sequencing of full-length 18S rRNA genes. Microbial eukaryotic composition and diversity varied as a function of substrate (carbonate versus sediment), activity (low activity versus active seep sites), sulfide concentration, and region (North versus South Hydrate Ridge). Sulfide concentration was correlated with changes in microbial eukaryotic composition and richness. This work also revealed the influence of oxygen content in the overlying water column and water depth on microbial eukaryotic composition and diversity, and identified distinct patterns from those previously observed for bacteria, archaea and macrofauna in methane seep ecosystems. Characterizing the structure of microbial eukaryotic communities in response to environmental variability is a key step towards understanding if and how microbial eukaryotes influence seep ecosystem structure and function.

Sapir, A, Dillman AR, Connon SA, Grupe BM, Ingels J, Mundo-Ocampo M, Levin LA, Baldwin JG, Orphan VJ, Sternberg PW.  2014.  Microsporidia-nematode associations in methane seeps reveal basal fungal parasitism in the deep sea. Frontiers in Microbiology. 5   10.3389/fmicb.2014.00043   AbstractWebsite

The deep sea is Earth's largest habitat but little is known about the nature of deep-sea parasitism. In contrast to a few characterized cases of bacterial and protistan parasites, the existence and biological significance of deep-sea parasitic fungi is yet to be understood. Here we report the discovery of a fungus-related parasitic microsporidium, Nematocenator marisprofundi n. gen. n. sp. that infects benthic nematodes at methane seeps on the Pacific Ocean floor. This infection is species-specific and has been temporally and spatially stable over 2 years of sampling, indicating an ecologically consistent host-parasite interaction. A high distribution of spores in the reproductive tracts of infected males and females and their absence from host nematodes' intestines suggests a sexual transmission strategy in contrast to the fecal-oral transmission of most microsporidia. N. mansprofundi targets the host's body wall muscles causing cell lysis, and in severe infection even muscle filament degradation. Phylogenetic analyses placed N. marisprofundi in a novel and basal clade not closely related to any described microsporidia clade, suggesting either that microsporidia-nematode parasitism occurred early in microsporidia evolution or that host specialization occurred late in an ancient deep-sea microsporidian lineage. Our findings reveal that methane seeps support complex ecosystems involving interkingdom interactions between bacteria, nematodes, and parasitic fungi and that microsporidia parasitism exists also in the deep-sea biosphere.

Talley, TS, Levin LA.  2001.  Modification of sediments and macrofauna by an invasive marsh plant. Biological Invasions. 3:51-68.   10.1023/A:1011453003168   AbstractWebsite

Invasive grasses have recently altered salt marsh ecosystems throughout the northern hemisphere. On the eastern seaboard of the USA, Phragmites australis has invaded both brackish and salt marsh habitats. Phragmites australis influence on sediments and fauna was investigated along a salinity and invasion-age gradient in marshes of the lower Connecticut River estuary. Typical salinities were about 19-4 ppt in Site I, 9-10 ppt in Site II and 5-7 ppt in Site III. Strongest effects were evident in the least saline settings (II and III) where Phragmites has been present the longest and exists in monoculture. Limited influence was evident in the most saline region (I) where Phragmites and native salt marsh plants co-occur. The vegetation within Phragmites stands in tidal regions of the Connecticut River generally exhibits taller, but less dense shoots, higher above-ground biomass, and lower below-ground biomass than does the un-invaded marsh flora. There were lower sediment organic content, greater litter accumulation and higher sediment chlorophyll a concentrations in Phragmites-invaded than un-invaded marsh habitat. Epifaunal gastropods (Succinea wilsoni and Stagnicola catascopium) were less abundant in habitats where Phragmites had invaded than in un-invaded marsh habitat. Macro-infaunal densities were lower in the Phragmites-invaded than un-invaded habitats at the two least saline sites (II and III). Phragmites stands supported more podurid insects, sabellid polychaetes, and peracarid crustaceans, fewer arachnids, midges, tubificid and enchytraeid oligochaetes, and greater habitat-wide taxon richness as measured by rarefaction, than did the uninvaded stands. The magnitude and significance of the compositional differences varied with season and with site; differences were generally greatest at the oldest, least saline sites (II and III) and during May, when faunal densities were higher than in September. However, experimental design and the 1-year study period precluded clear separation of salinity, age, and seasonal effects. Although structural effects of Phragmites on salt marsh faunas are evident, further investigation is required to determine the consequences of these effects for ecosystem function.

Kayen, RE, Schwab WC, Lee HJ, Torresan ME, Hein JR, Quinterno PJ, Levin LA.  1989.  Morphology of sea-floor landslides on Horizon Guyot: application of steady-state geotechnical analysis. Deep-Sea Research Part a-Oceanographic Research Papers. 36:1817-1839.   10.1016/0198-0149(89)90114-3   AbstractWebsite

Mass movement and erosion have been identified on the pelagic sediment cap of Horizon Guyot, a seamount in the Mid-Pacific Mountains. Trends in the size, shape and preservation of bedforms and sediment textural trends on the pelagic cap indicate that bottom-current-generated sediment transport direction is upslope. Slumping of the sediment cap occurred on and that the net bedload transport direction is upslope. Slumping of the sediment cap occurred on the northwest side of the guyot on a 1.6° to 2.0° slope in the zone of enhanced bottom-current activity. Submersible investigations of these slump blocks show them to be discrete and to have a relief of 6–15 m, with nodular chert beds cropping out along the headwall of individual rotated blocks. An evaluation of the stability of the sediment cap suggests that the combination of the current-induced beveling of the sea floor and infrequent earthquake loading accompanied by cyclic strength reduction is responsible for the initiation of slumps. The sediment in the area of slumping moved short distances in relatively coherent masses, whereas sediment that has moved beyond the summit cap perimeter has fully mobilized into sediment gravity flows and traveled large distances. A steady-state geotechnical analysis of Horizon Guyot sediment indicates the predisposition of deeply buried sediment towards disintegrative flow failure on appropriately steep slopes. Thus, slope failure in this deeper zone would include large amounts of internal deformation. However, gravitational stress in the near-surface sediment of the summit cap (sub-bottom depth< 14 m) is insufficient to maintain downslope movement after initial failure occurs. The predicted morphology of coherent slump blocks displaced and rafted upon a weakened zone at depth corresponds well with seismic-reflection data and submersible observations.