Export 5 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F [G] H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
Levin, LA, Zhu J, Creed E.  1991.  The genetic basis of life history characters in a polychaete exhibiting planktotrophy and lecithotrophy. Evolution. 45:380-397.   10.2307/2409672   AbstractWebsite

The polychaete Streblospio benedicti is unusual in that several field populations consist of individuals that exhibit either planktotrophic or lecithotrophic larval development. Planktotrophy in this species involves production of many small ova that develop into feeding larvae with a two- to three-week planktonic period. Lecithotrophy involves production of fewer, larger ova that develop into nonfeeding larvae that are brooded longer and have a brief planktonic stage. Reciprocal matings were performed to investigate genetic variance components and the correlation structure of life-history traits associated with planktotrophy and lecithotrophy. Our objective was to better understand persistence of this developmental dichotomy in Streblospio benedicti, and among marine invertebrates in general. Substantial additive genetic variation (75-98% of total) was detected for the following characters at first reproduction: female length; position of the first gametogenic setiger and first brood pouch; ovum diameter; three traits related to fecundity (numbers of ova per ovary, larvae per brood pouch, and larvae per brood); median larval planktonic period and the presence of larval swimming setae; but not for total number of brood pouches; larval length; larval feeding; and larval survivorship. Based on the unusual geographic distribution of development modes in this species, we hypothesize that the developmental traits have evolved in allopatry and have only recently come into contact in North Carolina. The high additive contribution to variance observed for many traits may be inflated due to (a) nonrandom breeding in nature, and (b) examination of only one component of an age-structured population at one time. Nuclear interaction variance and maternal variance accounted for 84% of the total variation in larval survivorship. This observation supports other empirical studies and theoretical predictions that nonadditive components of variance will increase in importance in individual traits that are most closely tied to fitness. A network of life-history trait correlations was observed that defines distinct planktotrophic and lecithotrophic trait complexes. Negative genetic correlations were present between fecundity and egg size, between fecundity and position of the first gametes, and between larval survivorship and median planktonic period. Positive genetic correlations were detected between fecundity and female size at first reproduction and between planktonic period and the presence of swimming setae. Intergenerational product-moment correlations were negative for larval length and fecundity, planktonic period and egg size, female size and larval survivorship, and fecundity and larval survivorship. If the genetic correlation structure observed in the laboratory persists in the field, it may constrain responses of individual characters to directional selection, and indirectly perpetuate the dichotomies associated with planktotrophy and lecithotrophy.

Levin, LA, Honisch B, Frieder CA.  2015.  Geochemical proxies for estimating faunal exposure to ocean acidification. Oceanography. 28:62-73.   10.5670/oceanog.2015.32   AbstractWebsite

Growing concern over the impacts of modern ocean acidification (OA) and interest in historical pH excursions have intensified the development of geochemical proxies for organism exposure to acidification and other components of the carbonate system. The use of carbonate structures produced by foraminifers, coccolithophores, corals, mollusks, brachiopods, echinoderms, ostracods, and fish for paleoreconstructions is an active area of study, and the resulting proxy development offers new opportunities for studying modern faunal exposures. Here we review information from field studies and laboratory experiments on carbonate system geochemical proxies in protists and metazoa. Geochemical proxy development for foraminifers and corals is most advanced; studies of fish and echinoderms are in their infancy. The most promising geochemical proxies are those with a mechanistic link to changes in seawater carbonate chemistry, such as boron isotopes (delta B-11), B/Ca, and U/Ca ratios recorded in skeletal hard parts. We also discuss indirect geochemical proxies (other trace elements and carbonate polymorphs) along with their potential uses and limitations due to modification by physiological processes, precipitation rate, and degree of calcification. Proxy measurements in modern skeletal structures, otoliths, statoliths, and other hard parts could reveal environmental exposures of organisms from larval through adult stages, and could advance inferences about effects of OA (and other stressors) on survival, growth, population connectivity, and other ecological attributes. Use of geochemical proxies in live, field-collected organisms is an underutilized and underdeveloped approach to studying OA consequences, but it may offer a powerful, complementary approach to laboratory observations.

Rathburn, AE, Levin LA, Tryon M, Gieskes JM, Martin JM, Perez ME, Fodrie FJ, Neira C, Fryer GJ, Mendoza G, McMillan PA, Kluesner J, Adamic J, Ziebis W.  2009.  Geological and biological heterogeneity of the Aleutian margin (1965-4822 m). Progress in Oceanography. 80:22-50.   10.1016/j.pocean.2008.12.002   AbstractWebsite

Geological, biological and biogeochemical characterization of the previously unexplored margin off Unimak Island, Alaska between 1965 and 4822 m water depth was conducted to examine: (1) the geological processes that shaped the margin, (2) the linkages between depth, geomorphology and environmental disturbance in structuring benthic communities of varying size classes and (3) the existence, composition and nutritional sources of methane seep biota on this margin. The study area was mapped and sampled using multibeam sonar, a remotely operated vehicle (ROV) and a towed camera system. Our results provide the first characterization of the Aleutian margin mid and lower slope benthic communities (micro-biota, foraminifera, macrofauna and megafauna), recognizing diverse habitats in a variety of settings. Our investigations also revealed that the geologic feature known as the "Ugamak Slide" is not a slide at all, and could not have resulted from a large 1946 earthquake. However, sediment disturbance appears to be a pervasive feature of this margin. We speculate that the deep-sea occurrence of high densities of Elphidium, typically a shallow-water foraminiferan, results from the influence of sediment redeposition from shallower habitats. Strong representation of cumacean, amphipod and tanaid crustaceans among the Unimak macrofauna may also reflect sediment instability. Although some faunal abundances decline with depth, habitat heterogeneity and disturbance generated by canyons and methane seepage appear to influence abundances of biota in ways that supercede any clear depth gradient in organic matter input. Measures of sediment organic matter and pigment content as well as C and N isotopic signatures were highly heterogeneous, although the availability of organic matter and the abundance of microorganisms in the upper sediment (1-5 cm) were positively correlated. We report the first methane seep on the Aleutian slope in the Unimak region (3263-3285 m), comprised of clam bed, pogonophoran field and carbonate habitats. Seep foraminiferal assemblages were dominated by agglutinated taxa, except for habitats above the seafloor on pogonophoran tubes. Numerous infaunal taxa in clam bed and pogonophoran field sediments and deep-sea "reef' cnidarians (e.g., corals and hydroids) residing on rocks near seepage sites exhibited light organic delta(13)C signatures indicative of chemosynthetic nutritional sources. The extensive geological, biogeochemical and biological heterogeneity as well as disturbance features observed on the Aleutian slope provide an attractive explanation for the exceptionally high biodiversity characteristic of the world's continental margins. (C) 2008 Elsevier Ltd. All rights reserved.

Helly, JJ, Levin LA.  2004.  Global distribution of naturally occurring marine hypoxia on continental margins. Deep-Sea Research Part I-Oceanographic Research Papers. 51:1159-1168.   10.1016/j.dsr.2004.03.009   AbstractWebsite

Hypoxia in the ocean influences biogeochemical cycling of elements, the distribution of marine species and the economic well being of many coastal countries. Previous delineations of hypoxic environments focus on those in enclosed seas where hypoxia may be exacerbated by anthropogenically induced eutrophication. Permanently hypoxic water masses in the open ocean, referred to as oxygen minimum zones, impinge on a much larger seafloor surface area along continental margins of the eastern Pacific, Indian and western Atlantic Oceans. We provide the first global quantification of naturally hypoxic continental margin floor by determining upper and lower oxygen minimum zone depth boundaries from hydrographic data and computing the area between the isobaths using seafloor topography. This approach reveals that there are over one million km(2) of permanently hypoxic shelf and bathyal sea floor, where dissolved oxygen is <0.5ml l(-1); over half (59%) occurs in the northern Indian Ocean. We also document strong variation in the intensity, vertical position and thickness of the OMZ as a function of latitude in the eastern Pacific Ocean and as a function of longitude in the northern Indian Ocean. Seafloor OMZs are regions of low biodiversity and are inhospitable to most commercially valuable marine resources, but support a fascinating array of protozoan and metazoan adaptations to hypoxic conditions. (C) 2004 Elsevier Ltd. All rights reserved.

Levin, LA, Bett BJ, Gates AR, Heimbach P, Howe BM, Janssen F, McCurdy A, Ruhl HA, Snelgrove P, Stocks KI, Bailey D, Baumann-Pickering S, Beaverson C, Benfield MC, Booth DJ, Carreiro-Silva M, Colaco A, Eble MC, Fowler AM, Gjerde KM, Jones DOB, Katsumata K, Kelley D, Le Bris N, Leonardi AP, Lejzerowicz F, Macreadie PI, McLean D, Meitz F, Morato T, Netburn A, Pawlowski J, Smith CR, Sun S, Uchida H, Vardaro MF, Venkatesan R, Weller RA.  2019.  Global observing needs in the deep ocean. Frontiers in Marine Science. 6   10.3389/fmars.2019.00241   AbstractWebsite

The deep ocean below 200 m water depth is the least observed, but largest habitat on our planet by volume and area. Over 150 years of exploration has revealed that this dynamic system provides critical climate regulation, houses a wealth of energy, mineral, and biological resources, and represents a vast repository of biological diversity. A long history of deep-ocean exploration and observation led to the initial concept for the Deep-Ocean Observing Strategy (DOOS), under the auspices of the Global Ocean Observing System (GOOS). Here we discuss the scientific need for globally integrated deep-ocean observing, its status, and the key scientific questions and societal mandates driving observing requirements over the next decade. We consider the Essential Ocean Variables (EOVs) needed to address deep-ocean challenges within the physical, biogeochemical, and biological/ecosystem sciences according to the Framework for Ocean Observing (FOO), and map these onto scientific questions. Opportunities for new and expanded synergies among deep-ocean stakeholders are discussed, including academic-industry partnerships with the oil and gas, mining, cable and fishing industries, the ocean exploration and mapping community, and biodiversity conservation initiatives. Future deep-ocean observing will benefit from the greater integration across traditional disciplines and sectors, achieved through demonstration projects and facilitated reuse and repurposing of existing deep-sea data efforts. We highlight examples of existing and emerging deep-sea methods and technologies, noting key challenges associated with data volume, preservation, standardization, and accessibility. Emerging technologies relevant to deep-ocean sustainability and the blue economy include novel genomics approaches, imaging technologies, and ultra-deep hydrographic measurements. Capacity building will be necessary to integrate capabilities into programs and projects at a global scale. Progress can be facilitated by Open Science and Findable, Accessible, Interoperable, Reusable (FAIR) data principles and converge on agreed to data standards, practices, vocabularies, and registries. We envision expansion of the deep-ocean observing community to embrace the participation of academia, industry, NGOs, national governments, international governmental organizations, and the public at large in order to unlock critical knowledge contained in the deep ocean over coming decades, and to realize the mutual benefits of thoughtful deep-ocean observing for all elements of a sustainable ocean.