Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
Mullineaux, LS, Metaxas A, Beaulieu SE, Bright M, Gollner S, Grupe BM, Herrera S, Kellner JB, Levin LA, Mitarai S, Neubert MG, Thurnherr AM, Tunnicliffe V, Watanabe HK, Won YJ.  2018.  Exploring the ecology of deep-sea hydrothermal vents in a metacommunity framework. Frontiers in Marine Science. 5   10.3389/fmars.2018.00049   AbstractWebsite

Species inhabiting deep-sea hydrothermal vents are strongly influenced by the geological setting, as it provides the chemical-rich fluids supporting the food web, creates the patchwork of seafloor habitat, and generates catastrophic disturbances that can eradicate entire communities. The patches of vent habitat host a network of communities (a metacommunity) connected by dispersal of planktonic larvae. The dynamics of the metacommunity are influenced not only by birth rates, death rates and interactions of populations at the local site, but also by regional influences on dispersal from different sites. The connections to other communities provide a mechanism for dynamics at a local site to affect features of the regional biota. In this paper, we explore the challenges and potential benefits of applying metacommunity theory to vent communities, with a particular focus on effects of disturbance. We synthesize field observations to inform models and identify data gaps that need to be addressed to answer key questions including: (1) what is the influence of the magnitude and rate of disturbance on ecological attributes, such as time to extinction or resilience in ametacommunity; (2) what interactions between local and regional processes control species diversity, and (3) which communities are "hot spots" of key ecological significance. We conclude by assessing our ability to evaluate resilience of vent metacommunities to human disturbance (e.g., deep-sea mining). Although the resilience of a few highly disturbed vent systems in the eastern Pacific has been quantified, these values cannot be generalized to remote locales in the western Pacific ormid Atlantic where disturbance rates are different and information on local controls is missing.

Fodrie, FJ, Levin LA, Rathburn AE.  2009.  High densities and depth-associated changes of epibenthic megafauna along the Aleutian margin from 2000-4200 m. Journal of the Marine Biological Association of the United Kingdom. 89:1517-1527.   10.1017/s0025315409000903   AbstractWebsite

The Aleutian margin is a dynamic environment underlying a productive coastal ocean and subject to frequent tectonic disturbance. In July 2004, We used over 500 individual bottom images from towed camera transects to investigate patterns of epibenthic megafaunal density and community composition on the contiguous Aleutian margin (53 degrees N 163 degrees W) at depths of 2000 m, 3200 m and 4200 M. We also examined the influence of vertical isolation on the megafaunal assemblage across a topographic rise at 3200 m, located 30 km from the main margin and elevated 800 m above the surrounding seafloor. In comparison to previous reports from bathyal and abyssal depths, megafaunal densities along the Aleutian margin were remarkably high, averaging 5.38 +/- 0.43 (mean +/- 1 standard error), 0.32 +/- 0.02 to 0.43 +/- 0.03 and 0.27 +/- 0.01 individuals m(-2) at 2000 m, 3200 m and 4200 m, respectively. Diversity at 2000 M Was elevated by 15-30% over the deeper sites (3200-4200 m) depending on the metric, while evenness was depressed by similar to 10%. Levels of richness and evenness were similar among the three deeper sites. Echinoderms were the most abundant phylum at each depth; ophiuroids accounted for 89% of individuals in photographs at 2000 m, echinoids were dominant at 3200 M (39%), and holothurians dominated at 4200 m (47%). We observed a 26% reduction in megafaunal density across the summit of the topographic rise relative to that documented on the continental slope at the same depth. However, the two communities at 3200 m were very similar in composition. Together, these data support the modified 'archibenthal zone of transition' framework for slope community patterns with distinct communities along the middle and lower slope (the upper slope was not evaluated here). This study fills a geographical gap by providing baseline information for a relatively pristine, high-latitude, deep-sea benthic ecosystem. As pressures grow for drilling, fishing and mining on high-latitude margins, such data can serve as a reference point for much-needed studies on the ecology, long-term dynamics, and anthropogenically induced change of these habitats.

Janousek, CN, Currin CA, Levin LA.  2007.  Succession of microphytobenthos in a restored coastal wetland. Estuaries and Coasts. 30:265-276. AbstractWebsite

Sediment microphytobenthos, such as diatoms and photosynthetic bacteria, are functionally important components of food webs and are key mediators of nutrient dynamics in marine wetlands. The medium to long-term recovery of benthic microproducers in restored habitats designed to improve degraded coastal wedand sites is largely unknown. Using taxon-specific photopigments, we describe the composition of microphytobenthic communities in a large restoration site in southern California and differences in the temporal recovery of biomass (chlorophyll a), composition, and taxonomic diversity between vegetated Spartina foliosa salt marsh and unvegetated mudflat. Visually distinct, spatially discreet, microphytobenthic patches appeared after no more than 7 mo within the restoration site and were distinguished by significant differences in biomass, taxonomic diversity, and the relative abundance of cyanobacteria versus diatoms. Sediment chlorophyll a concentrations within the restored site were similar to concentrations in nearby natural habitat 0.2-2.2 yr following marsh creation, suggesting rapid colonization by microproducers. Restored Spartina marsh very rapidly (between 0.2 and 1.2 yr) acquired microphytobenthic communities of similar composition and diversity to those in natural Spartina habitat, but restored mudflats took at least 1.6 to 2.2 yr to resemble natural mudflats. These results suggest relatively rapid recovery of microphytobenthic communities at the level of major taxonomic groups. Sediment features, such as pore water salinity and Spartina density, explained little variation in microphytobenthic taxonomic composition. Ile data imply that provision of structural heterogeneity in wedand construction (such as pools and vascular plants) might speed development of microproducer communities, but no direct seeding of sediment microfloras may be necessary.