Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2017
Sweetman, AK, Thurber AR, Smith CR, Levin LA, Mora C, Wei CL, Gooday AJ, Jones DOB, Rex M, Yasuhara M, Ingels J, Ruhl HA, Frieder CA, Danovaro R, Wurzberg L, Baco A, Grupe BM, Pasulka A, Meyer KS, Dunlop KM, Henry LA, Roberts JM.  2017.  Major impacts of climate change on deep-sea benthic ecosystems. Elementa-Science of the Anthropocene. 5:1-23.   10.1525/elementa.203   AbstractWebsite

The deep sea encompasses the largest ecosystems on Earth. Although poorly known, deep seafloor ecosystems provide services that are vitally important to the entire ocean and biosphere. Rising atmospheric greenhouse gases are bringing about significant changes in the environmental properties of the ocean realm in terms of water column oxygenation, temperature, pH and food supply, with concomitant impacts on deep-sea ecosystems. Projections suggest that abyssal (3000-6000 m) ocean temperatures could increase by 1 degrees C over the next 84 years, while abyssal seafloor habitats under areas of deep-water formation may experience reductions in water column oxygen concentrations by as much as 0.03 mL L-1 by 2100. Bathyal depths (200-3000 m) worldwide will undergo the most significant reductions in pH in all oceans by the year 2100 (0.29 to 0.37 pH units). O-2 concentrations will also decline in the bathyal NE Pacific and Southern Oceans, with losses up to 3.7% or more, especially at intermediate depths. Another important environmental parameter, the flux of particulate organic matter to the seafloor, is likely to decline significantly in most oceans, most notably in the abyssal and bathyal Indian Ocean where it is predicted to decrease by 40-55% by the end of the century. Unfortunately, how these major changes will affect deep-seafloor ecosystems is, in some cases, very poorly understood. In this paper, we provide a detailed overview of the impacts of these changing environmental parameters on deep-seafloor ecosystems that will most likely be seen by 2100 in continental margin, abyssal and polar settings. We also consider how these changes may combine with other anthropogenic stressors (e.g., fishing, mineral mining, oil and gas extraction) to further impact deep-seafloor ecosystems and discuss the possible societal implications.

2013
Thurber, AR, Levin LA, Rowden AA, Sommer S, Linke P, Kroger K.  2013.  Microbes, macrofauna, and methane: A novel seep community fueled by aerobic methanotrophy. Limnology and Oceanography. 58:1640-1656.   10.4319/lo.2013.58.5.1640   AbstractWebsite

During the discovery and description of seven New Zealand methane seep sites, an infaunal assemblage dominated by ampharetid polychaetes was found in association with high seabed methane emission. This ampharetid-bed assemblage had a mean density of 57,000 +/- 7800 macrofaunal individuals m(-2) and a maximum wet biomass of 274 g m(-2), both being among the greatest recorded from deep-sea methane seeps. We investigated these questions: Does the species assemblage present within these ampharetid beds form a distinct seep community on the New Zealand margin? and What type of chemoautotrophic microbes fuel this heterotrophic community? Unlike the other macro-infaunal assemblages, the ampharetid-bed assemblage composition was homogeneous, independent of location. Based on a mixing model of species-specific mass and isotopic composition, combined with published respiration measurements, we estimated that this community consumes 29-90 mmol C m(-2) d(-1) of methane-fueled biomass; this is > 290 times the carbon fixed by anaerobic methane oxidizers in these ampharetid beds. A fatty acid biomarker approach supported the finding that this community, unlike those previously known, consumes primarily aerobic methanotrophic bacteria. Due to the novel microbial fueling and high methane flux rates, New Zealand's ampharetid beds provide a model system to study the influence of metazoan grazing on microbially mediated biogeochemical cycles, including those that involve greenhouse gas emissions.