Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
Neira, C, Ingels J, Mendoza G, Hernandez-Lopez E, Levin LA.  2018.  Distribution of meiofauna in bathyal sediments influenced by the oxygen minimum zone off Costa Rica. Frontiers in Marine Science. 5   10.3389/fmars.2018.00448   AbstractWebsite

Ocean deoxygenation has become a topic of increasing concern because of its potential impacts on marine ecosystems, including oxygen minimum zone (OMZ) expansion and subsequent benthic effects. We investigated the influence of oxygen concentration and organic matter (OM) availability on metazoan meiofauna within and below an OMZ in bathyal sediments off Costa Rica, testing the hypothesis that oxygen and OM levels are reflected in meiofaunal community structures and distribution. Mean total densities in our sampling cores (400-1800 m water depth) were highest with 3688 ind. 10 cm(-2) at the OMZ core at 400 m water depth, decreasing rapidly downslope. Nematodes were overall dominant, with a maximum of 99.9% in the OMZ core, followed by copepods (13%), nauplii (4.8%), and polychaetes (3%). Relative copepod and nauplii abundance increased consistently with depth and increasing bottom-water O-2. Meiofaunal composition was significantly different among sites, with lower taxonomic diversity at OMZ sites relative to deeper, oxygenated sites. Vertical distribution patterns within sediments showed that in strongly oxygen-depleted sites less meiofauna was concentrated in the surface sediment than at deeper slope sites. Highest meiofaunal abundance and lowest diversity occurred under lowest oxygen and highest pigment levels, whereas highest diversity occurred under highest oxygen-concentrations and low pigments, as well as high quality of sedimentary pigment (chl a/phaeo) and organic carbon (C/N). The lower meiofaunal diversity, and lower structural and trophic complexity, at oxygen-depleted sites raises concerns about changes in the structure and function of benthic marine ecosystems in the face of OMZ expansions.

Gooday, AJ, Bett BJ, Escobar E, Ingole B, Levin LA, Neira C, Raman AV, Sellanes J.  2010.  Habitat heterogeneity and its influence on benthic biodiversity in oxygen minimum zones. Marine Ecology-an Evolutionary Perspective. 31:125-147.   10.1111/j.1439-0485.2009.00348.x   AbstractWebsite

Oxygen minimum zones (OMZs; midwater regions with O(2) concentrations <0.5 ml l(-1)) are mid-water features that intercept continental margins at bathyal depths (100-1000 m). They are particularly well developed in the Eastern Pacific Ocean, the Arabian Sea and the Bay of Bengal. Based on analyses of data from these regions, we consider (i) how benthic habitat heterogeneity is manifested within OMZs, (ii) which aspects of this heterogeneity exert the greatest influence on alpha and beta diversity within particular OMZs and (iii) how heterogeneity associated with OMZs influences regional (gamma) diversity on continental margins. Sources of sea-floor habitat heterogeneity within OMZs include bottom-water oxygen and sulphide gradients, substratum characteristics, bacterial mats, and variations in the organic matter content of the sediment and pH. On some margins, hard grounds, formed of phosphorites, carbonates or biotic substrata, represent distinct subhabitats colonized by encrusting faunas. Most of the heterogeneity associated with OMZs, however, is created by strong sea-floor oxygen gradients, reinforced by changes in sediment characteristics and organic matter content. For the Pakistan margin, combining these parameters revealed clear environmental and faunal differences between the OMZ core and the upper and lower boundary regions. In all Pacific and Arabian Sea OMZs examined, oxygen appears to be the master driver of alpha and beta diversity in all benthic faunal groups for which data exist, as well as macrofaunal assemblage composition, particularly in the OMZ core. However, other factors, notably organic matter quantity and quality and sediment characteristics, come into play as oxygen concentrations begin to rise. The influence of OMZs on meiofaunal, macrofaunal and megafaunal regional (gamma) diversity is difficult to assess. Hypoxia is associated with a reduction in species richness in all benthic faunal groups, but there is also evidence for endemism in OMZ settings. We conclude that, on balance, OMZs probably enhance regional diversity, particularly in taxa such as Foraminifera, which are more tolerant of hypoxia than others. Over evolutionary timescales, they may promote speciation by creating strong gradients in selective pressures and barriers to gene flow.

Levin, LA.  2003.  Oxygen minimum zone benthos: Adaptation and community response to hypoxia. Oceanography and Marine Biology, Vol 41. 41:1-45. AbstractWebsite

Mid-water oxygen minima (<0.5ml 1(-1) dissolved O-2) intercept the continental margins along much of the eastern Pacific Ocean, off west Africa and in the Arabian Sea and Bay of Bengal, creating extensive stretches of sea floor exposed to permanent, severe oxygen depletion. These seafloor oxygen minimum zones (OMZs) typically occur at bathyal depths between 200m and 1000m, and are major sites of carbon burial along the continental margins. Despite extreme oxygen depletion, protozoan and metazoan assemblages thrive in these environments. Metazoan adaptations include small, thin bodies, enhanced respiratory surface area, blood pigments such as haemoglobin, biogenic structure formation for stability in soupy sediments, an increased number of pyruvate oxidoreductases, and the presence of sulphide-oxidising symbionts. The organic-rich sediments of these regions often support mats of large sulphide-oxidising bacteria (Thioploca, Beggiatoa, Thiomargarita), and high-density, low-diversity metazoan assemblages. Densities of protistan and metazoan meiofauna are typically elevated in OMZs, probably due to high tolerance of hypoxia, an abundant food supply, and release from predation. Macrofauna and megafauna often exhibit dense aggregations at OMZ edges, but depressed densities and low diversity in the OMZ core, where oxygen concentration is lowest. Taxa most tolerant of severe oxygen depletion (<0.2mll(-1)) in seafloor OMZs include calcareous foraminiferans, nematodes, and annelids. Agglutinated protozoans, harpacticoid copepods, and calcified invertebrates are typically less tolerant. High dominance and relatively low species richness are exhibited by foraminiferans, metazoan meiofauna, and macrofauna within OMZs. At dissolved oxygen concentrations below 0.15 ml l(-1), bioturbation is reduced, the mixed layer is shallow, and chemosynthesis-based nutrition (via heterotrophy and symbiosis) becomes important. OMZs represent a major oceanographic boundary for many species. As they expand and contract over geological time, OMZs may influence genetic diversity and play a key role in the evolution of species at bathyal depths. These ecosystems may preview the types of adaptations, species, and processes that will prevail with increasing hypoxia over ecological and evolutionary time. However, many questions remain unanswered concerning controls on faunal standing stocks in OMZs, and the physiological, enzymatic, metabolic, reproductive and molecular adaptations that permit benthic animals to live in OMZs. As global warming and eutrophication reduce oxygenation of the world ocean, there is a pressing need to understand the functional consequences of oxygen depletion in marine ecosystems.