Export 5 results:
Sort by: Author Title Type [ Year  (Desc)]
Sato, KN, Powell J, Rudie D, Levin LA.  2018.  Evaluating the promise and pitfalls of a potential climate change-tolerant sea urchin fishery in southern California. Ices Journal of Marine Science. 75:1029-1041.   10.1093/icesjms/fsx225   AbstractWebsite

Marine fishery stakeholders are beginning to consider and implement adaptation strategies in the face of growing consumer demand and potential deleterious climate change impacts such as ocean warming, ocean acidification, and deoxygenation. This study investigates the potential for development of a novel climate change-tolerant sea urchin fishery in southern California based on Strongylocentrotus fragilis (pink sea urchin), a deep-sea species whose peak density was found to coincide with a current trap-based spot prawn fishery (Pandalus platyceros) in the 200-300-m depth range. Here we outline potential criteria for a climate change-tolerant fishery by examining the distribution, life-history attributes, and marketable qualities of S. fragilis in southern California. We provide evidence of seasonality of gonad production and demonstrate that peak gonad production occurs in the winter season. S. fragilis likely spawns in the spring season as evidenced by consistent minimum gonad indices in the spring/summer seasons across 4 years of sampling (2012-2016). The resiliency of S. fragilis to predicted future increases in acidity and decreases in oxygen was supported by high species abundance, albeit reduced relative growth rate estimates at water depths (485-510 m) subject to low oxygen (11.7-16.9 mmol kg similar to 1) and pHTotal (< 7.44), which may provide assurances to stakeholders and managers regarding the suitability of this species for commercial exploitation. Some food quality properties of the S. fragilis roe (e. g. colour, texture) were comparable with those of the commercially exploited shallow-water red sea urchin (Mesocentrotus franciscanus), while other qualities (e. g. 80% reduced gonad size by weight) limit the potential future marketability of S. fragilis. This case study highlights the potential future challenges and drawbacks of climate-tolerant fishery development in an attempt to inform future urchin fishery stakeholders.

Levin, LA, Le Bris N.  2015.  The deep ocean under climate change. Science. 350:766-768.   10.1126/science.aad0126   AbstractWebsite

The deep ocean absorbs vast amounts of heat and carbon dioxide, providing a critical buffer to climate change but exposing vulnerable ecosystems to combined stresses of warming, ocean acidification, deoxygenation, and altered food inputs. Resulting changes may threaten biodiversity and compromise key ocean services that maintain a healthy planet and human livelihoods. There exist large gaps in understanding of the physical and ecological feedbacks that will occur. Explicit recognition of deep-ocean climate mitigation and inclusion in adaptation planning by the United Nations Framework Convention on Climate Change (UNFCCC) could help to expand deep-ocean research and observation and to protect the integrity and functions of deep-ocean ecosystems.

Breitburg, DL, Salisbury J, Bernhard JM, Cai WJ, Dupont S, Doney SC, Kroeker KJ, Levin LA, Long WC, Milke LM, Miller SH, Phelan B, Passow U, Seibel BA, Todgham AE, Tarrant AM.  2015.  And on top of all that... Coping with ocean acidification in the midst of many stressors. Oceanography. 28:48-61.   10.5670/oceanog.2015.31   AbstractWebsite

Oceanic and coastal waters are acidifying due to processes dominated in the open ocean by increasing atmospheric CO2 and dominated in estuaries and some coastal waters by nutrient-fueled respiration. The patterns and severity of acidification, as well as its effects, are modified by the host of stressors related to human activities that also influence these habitats. Temperature, deoxygenation, and changes in food webs are particularly important co-stressors because they are pervasive, and both their causes and effects are often mechanistically linked to acidification. Development of a theoretical underpinning to multiple stressor research that considers physiological, ecological, and evolutionary perspectives is needed because testing all combinations of stressors and stressor intensities experimentally is impossible. Nevertheless, use of a wide variety of research approaches is a logical and promising strategy for improving understanding of acidification and its effects. Future research that focuses on spatial and temporal patterns of stressor interactions and on identifying mechanisms by which multiple stressors affect individuals, populations, and ecosystems is critical. It is also necessary to incorporate consideration of multiple stressors into management, mitigation, and adaptation to acidification and to increase public and policy recognition of the importance of addressing acidification in the context of the suite of other stressors with which it potentially interacts.

Zirino, A, Neira C, Maicu F, Levin LA.  2013.  Comments on and implications of a steady-state in coastal marine ecosystems. Chemistry & Ecology. 29:86-99.   10.1080/02757540.2012.696613   AbstractWebsite

Coastal ecosystems can be thought of as being established by a number of physico-geochemical drivers, e.g. geochemistry and bathymetry of the basins, climate, tidal and freshwater flows, natural and anthropogenic inputs of nutrients and toxins, all of which exert an influence on the resulting communities of organisms. Depending on the interactions among the major drivers, ecosystems may occur on both large and small scales and be basin-wide or within basins. For individual and separate ecosystems to exist with some permanence in time, e.g. reach a steady-state, they also have to be ‘defended’. Defences are mechanisms that counter changes to maintain the status quo. We argue, and present evidence to support the notion, that the defence mechanisms are inextricably tied to primary production and the biogeochemical cycling of organic matter and provide buffers that mitigate potentially adverse impacts by trace toxins. Colloid pumping, production of complexing ligands and sulfide formation are some of the mechanisms that control trace substances. Current methods for assessing ecosystems do not address the issue of steady-state, nor do they take account of defence activities, e.g. buffering. Therefore, they cannot assess the ‘robustness’ of ecosystems or their ability to resist change, for good or bad. Also, defence mechanisms may, for a time, mask future potentially serious impacts, suggesting that monitoring efforts with limited budgets should consider the measurement of the inputs into ecosystems as well as the immediate or short-term result of the inputs. [ABSTRACT FROM PUBLISHER]Copyright of Chemistry & Ecology is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Hofmann, GE, Smith JE, Johnson KS, Send U, Levin LA, Micheli F, Paytan A, Price NN, Peterson B, Takeshita Y, Matson PG, Crook ED, Kroeker KJ, Gambi MC, Rivest EB, Frieder CA, Yu PC, Martz TR.  2011.  High-Frequency Dynamics of Ocean pH: A Multi-Ecosystem Comparison. Plos One. 6   10.1371/journal.pone.0028983   AbstractWebsite

The effect of Ocean Acidification (OA) on marine biota is quasi-predictable at best. While perturbation studies, in the form of incubations under elevated pCO(2), reveal sensitivities and responses of individual species, one missing link in the OA story results from a chronic lack of pH data specific to a given species' natural habitat. Here, we present a compilation of continuous, high-resolution time series of upper ocean pH, collected using autonomous sensors, over a variety of ecosystems ranging from polar to tropical, open-ocean to coastal, kelp forest to coral reef. These observations reveal a continuum of month-long pH variability with standard deviations from 0.004 to 0.277 and ranges spanning 0.024 to 1.430 pH units. The nature of the observed variability was also highly site-dependent, with characteristic diel, semi-diurnal, and stochastic patterns of varying amplitudes. These biome-specific pH signatures disclose current levels of exposure to both high and low dissolved CO2, often demonstrating that resident organisms are already experiencing pH regimes that are not predicted until 2100. Our data provide a first step toward crystallizing the biophysical link between environmental history of pH exposure and physiological resilience of marine organisms to fluctuations in seawater CO2. Knowledge of this spatial and temporal variation in seawater chemistry allows us to improve the design of OA experiments: we can test organisms with a priori expectations of their tolerance guardrails, based on their natural range of exposure. Such hypothesis-testing will provide a deeper understanding of the effects of OA. Both intuitively simple to understand and powerfully informative, these and similar comparative time series can help guide management efforts to identify areas of marine habitat that can serve as refugia to acidification as well as areas that are particularly vulnerable to future ocean change.