Publications

Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
2009
Levin, LA, Dayton PK.  2009.  Ecological theory and continental margins: where shallow meets deep. Trends in Ecology & Evolution. 24:606-617.   10.1016/j.tree.2009.04.012   AbstractWebsite

Continental margins, where land becomes ocean and plunges to the deep sea, provide valuable food and energy resources, and perform essential functions such as carbon burial and nutrient cycling. They exhibit remarkably high species and habitat diversity, but this is threatened by our increasing reliance on the resources that margins provide, and by warming, expanding hypoxia and acidification associated with climate change. Continental margin ecosystems, with environments, constituents and processes that differ from those in shallow water, demand a new focus, in which ecological theory and experimental methods are brought to bear on management and conservation practices. Concepts of disturbance, diversity-function relationships, top-down versus bottom-up control, facilitation and meta-dynamics offer a framework for studying fundamental processes and understanding future change.

2004
Moseman, SM, Levin LA, Currin C, Forder C.  2004.  Colonization, succession, and nutrition of macrobenthic assemblages in a restored wetland at Tijuana Estuary, California. Estuarine Coastal and Shelf Science. 60:755-770.   10.1016/j.ecss.2004.03.013   AbstractWebsite

Modes of colonization, the successional trajectory, and trophic recovery of a macrofaunal community were analyzed over 19 months in the Friendship marsh, a 20-acre restored wetland in Tijuana Estuary, California. Traditional techniques for quantifying macrofaunal communities were combined with emerging stable isotopic approaches for evaluation of trophic recovery, making comparisons with a nearby natural Spartina foliosa habitat. Life history-based predictions successfully identified major colonization modes, although most taxa employed a variety of tactics for colonizing the restored marsh. The presence of S.foliosa did not seem to affect macrofaunal colonization or succession at the scale of this study. However, soil organic matter content in the restored marsh was positively correlated with insect densities, and high initial salinities may have limited the success of early colonists. Total macrofaunal densities recovered to natural marsh levels after 14 months and diversity, measured as species richness and the Shannon index (H'), was comparable to the natural marsh by 19 months. Some compositional disparities between the natural and created communities persisted after 19 months, including lower percentages of surface-feeding polychaetes (Polydora spp.) and higher percentages of dipteran insects and turbellarians in the Friendship marsh. As surficial structural similarity of infaunal communities between the Friendship and natural habitat was achieved, isotopic analyses revealed a simultaneous trajectory towards recovery of trophic structure. Enriched delta(13)C signatures of benthic microalgae and infauna, observed in the restored marsh shortly after establishment compared to natural Spartina habitat, recovered after 19 months. However, the depletion in delta(15)N signatures of macrofauna in the Friendship marsh indicated consumption of microalgae, particularly nitrogen-fixing cyanobacteria, while macroalgae and Spartina made a larger contribution to macrofaunal diets in the natural habitat. Future successional studies must continue to develop and employ novel combinations of techniques for evaluating structural and functional recovery of disturbed and created habitats. (C) 2004 Elsevier Ltd. All rights reserved.

1999
Fornes, WL, Demaster DJ, Levin LA, Blair NE.  1999.  Bioturbation and particle transport in Carolina slope sediments: A radiochemical approach. Journal of Marine Research. 57:335-355.   10.1357/002224099321618245   AbstractWebsite

In situ tracer experiments investigated short-term sediment mixing processes at two Carolina continental margin sites (water depth = 850 m) characterized by different organic C fluxes, (234)Th mixing coefficients (D(b)) and benthic assemblages. Phytoplankton, slope sediment, and sand-sized glass beads tagged with (210)Pb, (113)Sn, and (228)Th, respectively, were placed via submersible at the sediment-water interface at both field sites (Site I off Cape Fear, and Site m off Cape Hatteras). Experimental plots were sampled at 0, 1.5 days, and 90 days after tracer emplacement to examine short-term, vertical transport. Both sites are initially dominated by nonlocal mixing. Transport to the bottom of the surface mixed layer at both sites occurs more rapidly than (234)Th-based D(b) values predict; after 1.5 days, tagged particles were observed 5 cm below the sediment-water interface at Site I and 12 cm below at Site III. Impulse tracer profiles after 90 days at Site m exhibit primarily diffusive distributions, most likely due to a large number of random, nonlocal mixing events. The D(b) values determined from 90-day particle tagging experiments are comparable to those obtained from naturally occurring (234)Th profiles (similar to 100-day time scales) from nearby locations. The agreement between impulse tracer mixing coefficients and steady-state natural tracer mixing coefficients suggests that the diffusive analogue for bioturbation on monthly time scales is a realistic and useful approach. Tracer profiles from both sites exhibit some degree of particle selective mixing, but the preferential transport of the more labile carbon containing particles only occurred 30% of the time. Consequently, variations in the extent to which age-dependent mixing occurs in marine sediments may depend on factors such as faunal assemblage and organic carbon flux.

Levin, LA, Blair NE, Martin CM, Demaster DJ, Plaia G, Thomas CJ.  1999.  Macrofaunal processing of phytodetritus at two sites on the Carolina margin: in situ experiments using (13)C-labeled diatoms. Marine Ecology-Progress Series. 182:37-54.   10.3354/meps182037   AbstractWebsite

Tracer experiments using (13)C-labeled diatoms Thalassiosira pseudonana were carried out at two 850 m sites (I off Cape Fear and III off Cape Hatteras) on the North Carolina, USA, slope to examine patterns of macrofaunal consumption of fresh phytodetritus. Experiments examined the influence of taxon, feeding mode, body size and vertical position within the sediment column on access to surficial organic matter. delta(13)C measurements were made on macrofaunal metazoans and agglutinating protozoans from background sediments and from sediment plots in which (13)C-labeled diatoms were deposited and then sampled 0.3 h, 1 to 1.5 d, 3 mo and 14 mo later. Significant between-site differences were observed in background delta(13)C signatures of sediments, metazoans, and large, agglutinating protozoans, with values 2 to 3 parts per thousand lower at Site III than at Site I. Background delta(13)C signatures also varied as a function of taxon and of vertical position in the sediment column at Site III. The background delta(13)C value of carnivores was higher than that of surface-deposit feeders among Site I annelids, but no annelid feeding-group differences were observed at Site III. delta(13)C data from short-term (1 to 1.5 d) experiments revealed rapid diatom ingestion, primarily by agglutinated protozoans and annelids at Site I and mainly by annelids at Site III. Selective feeding on diatoms was exhibited by paraonid polychaetes, especially Aricidea spp. Exceptionally high uptake and retention of diatom C also was observed in the maldanid Praxillella sp., the nereid Ceratocephale sp. and several other surface-deposit feeding polychaetes. After 14 mo, little of the diatom (13)C remained at Site III, but high concentrations of the tracer were present in annelids and agglutinating protozoans at Site I. At both sites, nonannelid metazoans and subsurface-deposit feeding annelids exhibited the least uptake and retention of diatom C. Our hypotheses that large-bodied taxa and shallow-dwelling infauna should have greatest access to freshly deposited organic matter were not borne out. Some small, deep-dwelling taxa acquired label more readily than large or near-surface forms. Differences in tracer fates between sites reflected greater vertical mixing at Site III. These results indicate heterogeneity in benthic processes along the Carolina margin. but suggest that labile organic matter is consumed quickly at both sites. Because most of the taxa found to consume freshly deposited diatoms in these experiments are typical of bathyal settings, we infer that phytodetritus reaching the seabed in margin environments is rapidly processed by protozoan and metazoan components of the benthic fauna.