Export 6 results:
Sort by: Author Title Type [ Year  (Desc)]
Buhl-Mortensen, L, Vanreusel A, Gooday AJ, Levin LA, Priede IG, Buhl-Mortensen P, Gheerardyn H, King NJ, Raes M.  2010.  Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Marine Ecology-an Evolutionary Perspective. 31:21-50.   10.1111/j.1439-0485.2010.00359.x   AbstractWebsite

Biological structures exert a major influence on species diversity at both local and regional scales on deep continental margins. Some organisms use other species as substrates for attachment, shelter, feeding or parasitism, but there may also be Mutual benefits from the association. Here, we highlight the structural attributes and biotic effects of the habitats that corals, sea pens, sponges and xenophyophores offer other organisms. The environmental setting of the biological structures influences their species composition. The importance of benthic species as substrates seems to increase with depth as the complexity of the surrounding geological substrate and food supply decline. There are marked differences in the degree of mutualistic relationships between habitat-forming taxa. This is especially evident for scleractinian corals, which have high numbers of facultative associates (commensals) and few obligate associates (mutualists), and gorgonians, with their few commensals and many obligate associates. Size, flexibility and architectural complexity of the habitat-forming organism are positively related to species diversity for both sessile and mobile species. This is mainly evident for commensal species sharing a facultative relationship with their host. Habitat complexity is enhanced by the architecture of biological structures, as well as by biological interactions. Colony morphology has a great influence on feeding efficiency for suspension feeders. Suspension feeding, habitat-forming organisms modify the environment to optimize their food uptake. This environmental advantage is also passed on to associated filter-feeding species. These effects are poorly understood but represent key points for understanding ecosystems and biodiversity on continental margins. In this paper we explore the contributions of organisms and the biotic structures they create (rather than physical modifications) to habitat heterogeneity and diversity on the deep continental margins.

Levin, LA, Ziebis W, Mendoza GF, Growney-Cannon V, Walther S.  2006.  Recruitment response of methane-seep macrofauna to sulfide-rich sediments: An in situ experiment. Journal of Experimental Marine Biology and Ecology. 330:132-150.   10.1016/j.jembe.2005.12.022   AbstractWebsite

Hydrodynamically unbiased colonization trays were deployed for 6 months (Oct. 2000 to April 2001) on the northern California margin (Eel R. region; 525 m) to examine macrofaunal colonization rates at methane seeps. The influence of sulfide on recruitment and survival was examined by deploying sediments with and without sulfide added; effect of seep proximity was evaluated by placing trays inside and outside seeps. The trays contained a two-layer system mimicking vesicomyid clam bed habitat geochemistry, with 89 9 mM sulfide in a lower agar layer at the start of the experiment. After 6 month on the seabed, the lower agar layer contained 2-4 mM H2S. We observed rapid macrofaunal colonization equivalent to 50% of initial non-seep ambient densities. There was no difference in total colonizer densities, number of species, or rarefaction diversity among 3 treatments: (1) controls (no sulfide added) placed outside seeps, (2) trays with sulfide added placed outside seeps and (3) trays with sulfide added placed inside seep patches. Colonization trays with sulfide placed at seeps had different species composition from trays without sulfide place outside seeps; there were more amphipods (non-ampeliscid) and cumaceans in the seep/sulfide treatment and more nemerteans, Nephtys cornuta and tanaids in the non-seep/no-sulfide treatment. Outside seeps, annelids comprised <15% of tray colonists; within seep patches, annelids comprised 5 of the top 10 dominant colonizing taxa (24% of the total). The polychaetes Mediomastus sp., Aphelochaeta sp., Paraonidae sp., and Nerillidae sp. exhibited significantly higher densities in sulfide additions. Tanaids, echinoderms, and N. cornuta exhibited sulfide avoidance. At least 6 dorvilleid polychaete species colonized the experiments. Of these, 4 species occurred exclusively in trays with sulfide added and 80% of all dorvilleid individuals were found in trays with sulfide placed inside seep sediments. Counts of large sulfur bacterial filaments were positively correlated with maximum sulfide concentration in each tray, and with proximity of sulfide to the sediment surface. However, total macrofaunal densities were not correlated with tray sulfide concentrations. As a group, tray assemblages achieved some but not all characteristics of ambient seep assemblages after 6-month exposure on the sea floor. Distinctive colonization patterns at methane seeps contribute to the dynamic mosaic of habitat patches that characterize the eastern Pacific continental margin. Overall, proximity of seep habitats had at least as great an influence on macrofaunal colonization as tray sulfide concentrations. Taxa characteristic of seep sediments were more likely to settle into trays placed inside rather than outside seep patches. Whether this is due to limited dispersal ability or local geochemical cues remains to be determined. (C) 2005 Elsevier B.V. All rights reserved.

Helly, JJ, Levin LA.  2004.  Global distribution of naturally occurring marine hypoxia on continental margins. Deep-Sea Research Part I-Oceanographic Research Papers. 51:1159-1168.   10.1016/j.dsr.2004.03.009   AbstractWebsite

Hypoxia in the ocean influences biogeochemical cycling of elements, the distribution of marine species and the economic well being of many coastal countries. Previous delineations of hypoxic environments focus on those in enclosed seas where hypoxia may be exacerbated by anthropogenically induced eutrophication. Permanently hypoxic water masses in the open ocean, referred to as oxygen minimum zones, impinge on a much larger seafloor surface area along continental margins of the eastern Pacific, Indian and western Atlantic Oceans. We provide the first global quantification of naturally hypoxic continental margin floor by determining upper and lower oxygen minimum zone depth boundaries from hydrographic data and computing the area between the isobaths using seafloor topography. This approach reveals that there are over one million km(2) of permanently hypoxic shelf and bathyal sea floor, where dissolved oxygen is <0.5ml l(-1); over half (59%) occurs in the northern Indian Ocean. We also document strong variation in the intensity, vertical position and thickness of the OMZ as a function of latitude in the eastern Pacific Ocean and as a function of longitude in the northern Indian Ocean. Seafloor OMZs are regions of low biodiversity and are inhospitable to most commercially valuable marine resources, but support a fascinating array of protozoan and metazoan adaptations to hypoxic conditions. (C) 2004 Elsevier Ltd. All rights reserved.

Neira, C, Sellanes J, Levin LA, Arntz WE.  2001.  Meiofaunal distributions on the Peru margin: relationship to oxygen and organic matter availability. Deep-Sea Research Part I-Oceanographic Research Papers. 48:2453-2472.   10.1016/s0967-0637(01)00018-8   AbstractWebsite

A quantitative study of metazoan meiofauna was carried out on bathyal sediments (305, 562, 830 and 1210 m) along a transect within and beneath the oxygen minimum zone (OMZ) in the southeastern Pacific off Callao, Peru (12 degreesS). Meiobenthos densities ranged from 1517 (upper slope, middle of OMZ) to 440-548 ind. 10cm(-2) (lower slope stations, beneath the OMZ). Nematodes were the numerically dominant meiofaunal taxon at every station, followed by copepods and nauplii. Increasing bottom-water oxygen concentration and decreasing organic matter availability downslope were correlated with observed changes in meiofaunal abundance. The 300-m site, located in the middle of the OMZ, differed significantly in meiofaunal abundance, dominance, and in vertical distribution pattern from the deeper sites. At 305 m, nematodes amounted to over 99% of total meiofauna; about 70% of nematodes were found in the 2-5 cm. interval. At the deeper sites, about 50% were restricted to the top I cm. The importance of copepods and nauplii increased consistently with depth, reaching similar to 12% of the total meiofauna at the deepest site. The observation of high nematode abundances at oxygen concentrations <0.02mll(-1) supports the hypothesis that densities are enhanced by an indirect positive effect of low oxygen involving (a) reduction of predators and competitors and (b) preservation of organic matter leading to high food availability and quality. Food input and quality, represented here by chloroplastic pigment equivalents (CPE) and sedimentary labile organic compounds (protein, carbohydrates and lipids), were strongly, positively correlated with nematode abundance. By way of contrast, oxygen exhibited a strong negative correlation, overriding food availability, with abundance of other meiofauna such as copepods and nauplii. These taxa were absent at the 300-m site. The high correlation of labile organic matter (C-LOM, sum of carbon contents in lipids, proteins and carbohydrates) with CPE (Pearson's r = 0.99, p <0.01) suggests that most of the sedimentary organic material sampled was of phytodetrital origin. The fraction of sediment organic carbon potentially available to benthic. heterotrophs, measured as C-LOM/Total organic carbon, was on average 17% at all stations. Thus, a residual, refractory fraction, constitutes the major portion of organic matter at the studied bathyal sites. (C) 2001 Elsevier Science Ltd. All rights reserved.

Levin, LA, Blair NE, Martin CM, Demaster DJ, Plaia G, Thomas CJ.  1999.  Macrofaunal processing of phytodetritus at two sites on the Carolina margin: in situ experiments using (13)C-labeled diatoms. Marine Ecology-Progress Series. 182:37-54.   10.3354/meps182037   AbstractWebsite

Tracer experiments using (13)C-labeled diatoms Thalassiosira pseudonana were carried out at two 850 m sites (I off Cape Fear and III off Cape Hatteras) on the North Carolina, USA, slope to examine patterns of macrofaunal consumption of fresh phytodetritus. Experiments examined the influence of taxon, feeding mode, body size and vertical position within the sediment column on access to surficial organic matter. delta(13)C measurements were made on macrofaunal metazoans and agglutinating protozoans from background sediments and from sediment plots in which (13)C-labeled diatoms were deposited and then sampled 0.3 h, 1 to 1.5 d, 3 mo and 14 mo later. Significant between-site differences were observed in background delta(13)C signatures of sediments, metazoans, and large, agglutinating protozoans, with values 2 to 3 parts per thousand lower at Site III than at Site I. Background delta(13)C signatures also varied as a function of taxon and of vertical position in the sediment column at Site III. The background delta(13)C value of carnivores was higher than that of surface-deposit feeders among Site I annelids, but no annelid feeding-group differences were observed at Site III. delta(13)C data from short-term (1 to 1.5 d) experiments revealed rapid diatom ingestion, primarily by agglutinated protozoans and annelids at Site I and mainly by annelids at Site III. Selective feeding on diatoms was exhibited by paraonid polychaetes, especially Aricidea spp. Exceptionally high uptake and retention of diatom C also was observed in the maldanid Praxillella sp., the nereid Ceratocephale sp. and several other surface-deposit feeding polychaetes. After 14 mo, little of the diatom (13)C remained at Site III, but high concentrations of the tracer were present in annelids and agglutinating protozoans at Site I. At both sites, nonannelid metazoans and subsurface-deposit feeding annelids exhibited the least uptake and retention of diatom C. Our hypotheses that large-bodied taxa and shallow-dwelling infauna should have greatest access to freshly deposited organic matter were not borne out. Some small, deep-dwelling taxa acquired label more readily than large or near-surface forms. Differences in tracer fates between sites reflected greater vertical mixing at Site III. These results indicate heterogeneity in benthic processes along the Carolina margin. but suggest that labile organic matter is consumed quickly at both sites. Because most of the taxa found to consume freshly deposited diatoms in these experiments are typical of bathyal settings, we infer that phytodetritus reaching the seabed in margin environments is rapidly processed by protozoan and metazoan components of the benthic fauna.

Schaff, T, Levin L, Blair N, DeMaster D, Pope R, Boehme S.  1992.  Spatial heterogeneity of benthos on the Carolina continental slope: Large (100 km)-scale variation. Marine ecology progress series. Oldendorf. 88:143-160. AbstractWebsite

Large-scale spatial heterogeneity of macrofaunal and microbial communities was examined on the continental slope off North and South Carolina, USA, by comparing 3 sites, separated by 130 to 150 km and all at 850 m water depth. Significant variation was found among macrofaunal assemblages at all 3 sites, and between microbial counts at 2 sites. We investigated the hypothesis that 100 km scale heterogeneity was driven by variation in organic C flux to the sea floor. The northernmost site (Site III, off Cape Hatteras, NC) was found to have macrofaunal abundances (> 55,000 m super(-2)) higher than any previously recorded from this depth, and significantly higher than those at Site II (off Cape Lookout, NC) (21,319 m super(-2)) or Site I (off Charleston, SC) (9438 m super(-2)). Trends in macrofaunal abundance did not follow those of sediment TOC (total organic carbon), but agreed well with estimates of total carbon flux for the 3 sites. Mixing coefficients determined from profiles of naturally occurring super(234)Th (half life 24 d) indicate that the sediments at Site III are mixed 2 to 6 times faster than at the other 2 sites, which is consistent with the trends in macrofaunal abundance and biomass.