Publications

Export 9 results:
Sort by: Author Title Type [ Year  (Desc)]
2018
Neira, C, Vales M, Mendoza G, Hoh E, Levin LA.  2018.  Polychlorinated biphenyls (PCBs) in recreational marina sediments of San Diego Bay, southern California. Marine Pollution Bulletin. 126:204-214.   10.1016/j.marpolbul.2017.10.096   AbstractWebsite

Polychlorinated biphenyl (PCB) concentrations were determined in surface sediments from three recreational marinas in San Diego Bay, California. Total PCB concentrations ranged from 23 to 153, 31-294, and 151-1387 ng g(-1) for Shelter Island Yacht Basin (SIYB), Harbor Island West (HW) and Harbor Island East (HE), respectively. PCB concentrations were significantly higher in HE and PCB group composition differed relative to HW and SIYB, which were not significantly different from each other in concentration or group composition. In marina sediments there was a predominance (82-85%) of heavier molecular weight PCBs with homologous groups (6CL-7CL) comprising 59% of the total. In HE 75% of the sites exceeded the effect range median (ERM), and toxicity equivalence (TEQ dioxin-like PCBs) values were higher relative to those of HW and SIYB, suggesting a potential ecotoxicological risk.

2015
Levin, LA, Le Bris N.  2015.  The deep ocean under climate change. Science. 350:766-768.   10.1126/science.aad0126   AbstractWebsite

The deep ocean absorbs vast amounts of heat and carbon dioxide, providing a critical buffer to climate change but exposing vulnerable ecosystems to combined stresses of warming, ocean acidification, deoxygenation, and altered food inputs. Resulting changes may threaten biodiversity and compromise key ocean services that maintain a healthy planet and human livelihoods. There exist large gaps in understanding of the physical and ecological feedbacks that will occur. Explicit recognition of deep-ocean climate mitigation and inclusion in adaptation planning by the United Nations Framework Convention on Climate Change (UNFCCC) could help to expand deep-ocean research and observation and to protect the integrity and functions of deep-ocean ecosystems.

2010
Stramma, L, Schmidtko S, Levin LA, Johnson GC.  2010.  Ocean oxygen minima expansions and their biological impacts. Deep-Sea Research Part I-Oceanographic Research Papers. 57:587-595.   10.1016/j.dsr.2010.01.005   AbstractWebsite

Climate models with biogeochemical components predict declines in oceanic dissolved oxygen with global warming. In coastal regimes oxygen deficits represent acute ecosystem perturbations Here, we estimate dissolved oxygen differences across the global tropical and subtropical oceans within the oxygen minimum zone (200-700-dbar depth) between 1960-1974 (an early period with reliable data) and 1990-2008 (a recent period capturing ocean response to planetary warming) In most regions of the tropical Pacific. Atlantic, and Indian Oceans the oxygen content in the 200-700-dbar layer has declined. Furthermore, at 200 dbar, the area with O(2) < 70 mu mol kg(-1) where some large mobile macro-organisms are unable to abide, has increased by 4.5 million km(2) The tropical low oxygen zones have expanded horizontally and vertically Subsurface oxygen has decreased adjacent to most continental shelves However, oxygen has increased in sonic regions in the subtropical gyres at the depths analyzed According to literature discussed below, fishing pressure is strong in the open ocean, which may make it difficult to isolate the impact of declining oxygen on fisheries At shallower depths we predict habitat compression will occur for hypoxia-intolerant taxa, with eventual loss of biodiversity. Should past trends in observed oxygen differences continue into the future, shifts in animal distributions and changes in ecosystem structure could accelerate (C) 2010 Elsevier Ltd. All rights reserved

2009
Gooday, AJ, Levin LA, da Silva AA, Bett BJ, Cowie GL, Dissard D, Gage JD, Hughes DJ, Jeffreys R, Lamont PA, Larkin KE, Murty SJ, Schumacher S, Whitcraft C, Woulds C.  2009.  Faunal responses to oxygen gradients on the Pakistan margin: A comparison of foraminiferans, macrofauna and megafauna. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 56:488-502.   10.1016/j.dsr2.2008.10.003   AbstractWebsite

The Pakistan Margin is characterised by a strong mid-water oxygen minimum zone (OMZ) that intercepts the seabed at bathyal depths (150-1300 m). We investigated whether faunal abundance and diversity trends were similar among protists (foraminiferans and gromiids), metazoan macrofauna and megafauna along a transect (140-1850 m water depth) across the OMZ during the 2003 intermonsoon (March-May) and late/post-monsoon (August-October) seasons. All groups exhibited some drop in abundance in the OMZ core (250-500 m water depth; O(2): 0.10-0.13 mL L(-1) = 4.46-5.80 mu M) but to differing degrees. Densities of foraminiferans >63 mu m were slightly depressed at 300 m, peaked at 738 m, and were much lower at deeper stations. Foraminiferans >300 mu m were the overwhelmingly dominant macrofaunal organisms in the OMZ core. Macrofaunal metazoans reached maximum densities at 140 m depth, with additional peaks at 850, 940 and 1850 m where foraminiferans were less abundant. The polychaete Linopherus sp. was responsible for a macrofaunal biomass peak at 950 m. Apart from large swimming animals (fish and natant decapods), metazoan megafauna were absent between 300 and 900 m (O(2) <0.14-0.15 mLL(-1) = 6.25-6.69 mu M) but were represented by a huge, ophiuroid-dominated abundance peak at 1000 m (O(2) similar to 0.15-0.18 mLL(-1) = 6.69-8.03 mu M). Gromiid protists were confined largely to depths below 1150 m (O(2) > 0.2 mLL(-1) = 8.92 mu M). The progressively deeper abundance peaks for foraminiferans (> 63 mu m), Linopherus sp. and ophiuroids probably represent lower OMZ boundary edge effects and suggest a link between body size and tolerance of hypoxia. Macro- and megafaunal organisms collected between 800 and 1100 m were dominated by a succession of different taxa, indicating that the lower part of the OMZ is also a region of rapid faunal change. Species diversity was depressed in all groups in the OMZ core, but this was much more pronounced for macrofauna and megafauna than for foraminiferans. Oxygen levels strongly influenced the taxonomic composition of all faunal groups. Calcareous foraminiferans dominated the seasonally and permanently hypoxic sites (136-300 m); agglutinated foraminiferans were relatively more abundant at deeper stations where oxygen concentrations were >0.13 mLL(-1)( = 5.80 mu M). Polychaetes were the main macrofaunal taxon within the OMZ; calcareous macrofauna, and megafauna (molluscs and echinoderms) were rare or absent where oxygen levels were lowest. The rarity of larger animals between 300 and 700 m on the Pakistan Margin, compared with the abundant macrofauna in the OMZ core off Oman, is the most notable contrast between the two sides of the Arabian Sea. This difference probably reflects the slightly higher oxygen levels and better food quality on the western side. (C) 2008 Published by Elsevier Ltd.

2006
Oliver, PG, Levin L.  2006.  A new species of the family Thyasiridae (Mollusca : Bivalvia) from the oxygen minimum zone of the Pakistan marcrin. Journal of the Marine Biological Association of the United Kingdom. 86:411-416.   10.1017/s0025315406013270   AbstractWebsite

A new species of Thyasiridae, 'Leptaxinus' indusarluni sp. nov. is described from the Indus margin, off Pakistan. The generic affinity is tentative and possible alternatives arc discussed. It occurs between 800 m and 1000 m water depth in a low oxygen environment, where it is relatively abundant. The ecological setting is described and data suggest that this species is not chemosymbiotic.

2005
Levin, LA.  2005.  Ecology of cold seep sediments: Interactions of fauna with flow, chemistry and microbes. Oceanography and Marine Biology - an Annual Review, Vol. 43. 43( Gibson RN, Atkinson RJA, Gordon JDM, Eds.).:1-46., Boca Raton: Crc Press-Taylor & Francis Group Abstract

Cold seeps occur in geologically active and passive continental margins, where pore waters enriched in methane are forced upward through the sediments by pressure gradients. The advective supply of methane leads to dense microbial communities with high metabolic rates. Anaerobic methane oxidation presumably coupled to sulphate reduction facilitates formation of carbonates and, in many places, generates extremely high concentrations of hydrogen sulphide in pore waters. Increased food supply, availability of hard substratum and high concentrations of methane and sulphide supplied to free-living and symbiotic bacteria provide the basis for the complex ecosystems found at these sites. This review examines the structures of animal communities in seep sediments and how they are shaped by hydrologic, geochemical and microbial processes. The full size range of biota is addressed but emphasis is on the mid-size sediment-dwelling infauna (foraminiferans, metazoan meiofauna and macrofauna), which have received less attention than megafauna or microbes. Megafaunal biomass at seeps, which far exceeds that of surrounding non-seep sediments, is dominated by bivalves (mytilids, vesicomyids, lucinids and thyasirids) and vestimentiferan tube worms, with pogonophorans, cladorhizid sponges, gastropods and shrimp sometimes abundant. In contrast, seep sediments at shelf and upper slope depths have infaunal densities that often differ very little from those in ambient sediments. At greater depths, seep infauna exhibit enhanced densities, modified composition and reduced diversity relative to background sediments. Dorvilleid, hesionid and ampharetid polychaetes, nematodes, and calcareous foraminiferans are dominant. There is extensive spatial heterogeneity of microbes and higher organisms at seeps. Specialized infaunal communities are associated with different seep habitats (microbial mats, clam beds, mussel beds and tube worms aggregations) and with different vertical zones in the sediment. Whereas fluid flow and associated porewater properties, in particular sulphide concentration, appear to regulate the distribution, physiological adaptations and sometimes behaviour of many seep biota, sometimes the reverse is true. Animal-microbe interactions at seeps are complex and involve symbioses, heterotrophic nutrition, geochemical feedbacks and habitat structure. Nutrition of seep fauna varies, with thiotrophic and methanotrophic symbiotic bacteria fueling most of the megafaunal forms but macrofauna and most meiofauna are mainly heterotrophic. Macrofaunal food sources are largely photosynthesis-based at shallower seeps but reflect carbon fixation by chemosynthesis and considerable incorporation of methane-derived C at deeper seeps. Export of seep carbon appears to be highly localized based on limited studies in the Gulf of Mexico. Seep ecosystems remain one of the ocean's true frontiers. Seep sediments represent some of the most extreme marine conditions and offer unbounded opportunities for discovery in the realms of animal-microbe-geochemical interactions, physiology, trophic ecology, biogeography, systematics and evolution.

2003
Levin, LA, Ziebis W, Mendoza GF, Growney VA, Tryon MD, Brown KM, Mahn C, Gieskes JM, Rathburn AE.  2003.  Spatial heterogeneity of macrofauna at northern California methane seeps: influence of sulfide concentration and fluid flow. Marine Ecology-Progress Series. 265:123-139.   10.3354/meps265123   AbstractWebsite

Relationships among fluid flow, sulfide concentration, sulfur bacteria and macrofaunal assemblages were examined at methane seeps on the northern California margin, near the mouth of the Eel River (512 to 525 m). Over a 6 mo period, sediments covered with microbial mats exhibited significant but variable outflow of altered fluids, with no flow reversals. This fluid flow was associated with high porewater sulfide concentrations (up to 20 mM) and almost no oxygen penetration of sediments (<0.1 mm). Vesicomya pacifica (clam) bed and non-seep sediments exhibited little net fluid outflow and similar oxygen penetration (3 and 4 mm, respectively); however, sulfide concentrations were higher in subsurface clam-bed sediments (up to 2 mM) than in non-seep sediments (<200 muM). Macrofaunal densities did not differ among the 3 habitats (13 800 to 16 800 ind. m(-2); >300 mum), but biomass and diversity (no. species per core, E(S-100), H') were lower and composition varied in the sulfidic microbial mat sediments relative to clam-bed and non-seep sediments. The community in microbial mat-covered sediments consisted largely (82%) of 6 species in the polychaete family Dorvilleidae, whereas the clam-bed and non-seep microhabitats supported a mixture of annelids, peracarid crustaceans, nemerteans, and mollusks. Vertical microprofiling of sulfide in animal cores indicated that most taxa avoid H2S concentrations >1 mM. However, sulfide-oxidizing filamentous bacteria, dorvilleid polychaetes and bivalves (mainly V. pacifica) exhibited highest densities at sulfide concentrations of 1 to 5 mM sulfide. Horizontal and vertical patterns of sulfide availability have a strong influence on the fine-scale distribution, structure and composition of macrofaunal assemblages inhabiting methane seeps and must be accounted for when characterizing the microbiology and ecology of seep habitats.

2000
Rathburn, AE, Levin LA, Held Z, Lohmann KC.  2000.  Benthic foraminifera associated with cold methane seeps on the northern California margin: Ecology and stable isotopic composition. Marine Micropaleontology. 38:247-266.   10.1016/s0377-8398(00)00005-0   AbstractWebsite

Release of methane from large marine reservoirs has been linked to climate change, as a causal mechanism and a consequence of temperature changes, during the Quaternary and the Paleocene. These inferred linkages are based primarily on variations in benthic foraminiferal stable isotope signatures. Few modem analog data exist, however, to assess the influence of methane flux on the geochemistry or faunal characteristics of benthic foraminiferal assemblages. Here we present analyses of the ecology and stable isotopic compositions of living (Rose Bengal stained) and dead (fossil) foraminifera (>150 mu m) from cold methane seeps on the slope off of the Eel River, northern California (500-525 m), and discuss potential applications for reconstructions of methane release in the past and present. Calcareous foraminiferal assemblages associated with Calyptogena clam bed seeps were comprised of species that are also found in organic-rich environments. Cosmopolitan, paleoceanographically important taxa were abundant; these included Uvigerina, Bolivina, Chilostomella, Globobulimina, and Nonionella. We speculate that seep foraminifera are attracted to the availability of food at cold seeps, and require no adaptations beyond those needed for life in organic-rich, reducing environments. Oxygen isotopic values of the tests of living foraminiferal assemblages from seeps had a high range (up to 0.69 parts per thousand) as did carbon isotopic values (up to 1.02 parts per thousand). Many living foraminiferal isotope values were within the range exhibited by the same or similar species in non-seep environments. Carbon isotopic values of fossil foraminifera found deeper in the sediments (18-20 cm), however, were 4.10 parts per thousand (U. peregrina) and 3.60 parts per thousand (B. subargentea) more negative than living delta(13)C values. These results suggest that delta(13)C values of foraminiferal tests reflect methane seepage and species-specific differences in isotopic composition, and can indicate temporal variations in seep activity. A better understanding of foraminiferal ecology and stable isotopic composition will enhance paleo-seep recognition, and improve interpretations of climatic and paleoceanographic change. (C) 2000 Elsevier Science B.V. All rights reserved.

1994
Levin, LA, Leithold EL, Gross TF, Huggett CL, Dibacco C.  1994.  Contrasting effects of substrate mobility on infaunal assemblages inhabiting two high-energy settings on Fieberling Guyot. Journal of Marine Research. 52:489-522.   10.1357/0022240943077028   AbstractWebsite

The influence of seamount-intensified flows on the structure of infaunal assemblages was examined at two sand-covered sites located 2.3 km apart atop the summit plain of Fieberling Guyot (32-degrees 27.6'N 127-degrees 48.0'W). Both sites experience strong, tidal bottom currents with flows exceeding 20 cm/ s on a daily basis (4 mab). Estimates of shear velocity (u*) did not differ significantly between the two sites. However, differences in sediment composition and density produced different sediment transport regimes at the two sites. At Sea Pen Rim (SPR), located on the NW perimeter (635 m), sedimentary particles were composed primarily of basaltic sands that experienced negligible transport during the study period. At White Sand Swale (WSS, 580 m), a narrow valley enclosed on three sides by basalt outcrops, sediments were composed almost entirely of foraminiferal sands that moved daily. Sediment organic content and microbial abundances were similar at the two sites. Infauna (> 300 mum) had higher densities at WSS (1870/m2) than SPR (1489/m2), but lower expected species richness. Although the 2 sites shared nearly 50% of identified species, peracarid crustaceans, echinoderms, sponges, and bryozoans were proportionally more important in the stable substrates of SPR, while turbellarians, bivalves, and aplacophorans were better represented in the shifting sands of WSS. The infauna of WSS lived deeper in the sediment column (> 50% below 2 cm) than that of SPR (> 50% in the upper 1 cm), at least partly because the majority (83%) at WSS were subsurface burrowers with motile lifestyles. Tube-building and epifaunal lifestyles were more common at SPR than WSS, as were surface-deposit and filter-feeding modes. Fences and weirs were deployed at the study sites for 6.5-wk and 6-mo periods to manipulate bottom stress. Changes in faunal patterns within weirs at WSS reinforced our conjecture that contrasting sediment transport regimes explain between-site differences in community structure. Fence effects varied with deployment period and site. Topographic features on Fieberling Guyot produce heterogeneous sedimentary settings characterized by different transport regimes. Our results suggest that substrate mobility exerts primary control over infaunal community structure at the two high-energy sites.