Publications

Export 6 results:
Sort by: Author Title Type [ Year  (Asc)]
2002
Davis, JLD, Levin LA.  2002.  Importance of pre-recruitment life-history stages to population dynamics of the woolly sculpin Clinocottus analis. Marine Ecology-Progress Series. 234:229-246.   10.3354/meps234229   AbstractWebsite

The relative influence of pre- versus post-recruitment life-history events on population size has been the subject of much recent debate. In the marine realm, much work has focused on intertidal invertebrates and on tropical reef fishes, with mixed results. We addressed this problem for a temperate intertidal fish, Clinocottus analis. Our main goal was to determine which life-history stage was most responsible for temporal changes in population size from 1996 to 2000 at 2 sites in San Diego, California, both seasonally and during the 1997 to 1998 El Nino Southern Oscillation (ENSO) event. We approached the problem using cohort analysis and matrix population modeling. Recruitment pulses were evident in population size structure for up to a year, unobscured by post-recruitment mortality, which was not density-dependent, Recruitment was not correlated to spawning adult biomass of 3 mo earlier, suggesting that egg, larval, or early post-settlement processes during those 3 mo determined the magnitude of recruitment, and ultimately, population size. Stage-structured population projection matrices were constructed to compare population growth rates and sensitivities among seasons and between climate periods (El Nino and non-El Nino), Elasticity (prospective) and decomposition (retrospective) analyses of these matrices indicated that the vital rates to which population growth rate (lambda) was theoretically most sensitive were not necessarily those responsible for observed temporal differences in lambda. Although, was most sensitive to juvenile growth and adult survivorship, fertility (which in this model included fecundity and egg, larval, and early post-settlement survivorship), in addition to juvenile growth, drove observed seasonal differences in lambda C. andlis population size decreased during the 1997 to 1998 El Nino event due to a decrease in recruitment, a decrease in batch fecundity (hydrated eggs per female) and, at 1 site, changes in juvenile survivorship, Results of the study emphasize the power of early life-history events to structure C. analis populations on both seasonal and longer timescales.

2006
Levin, LA.  2006.  Recent progress in understanding larval dispersal: new directions and digressions. Integrative and Comparative Biology. 46:282-297.   10.1093/icb/024   AbstractWebsite

Larvae have been difficult to study because their small size limits our ability to understand their behavior and the conditions they experience. Questions about larval transport focus largely on (a) where they go [dispersal] and (b) where they come from [connectivity]. Mechanisms of transport have been intensively studied in recent decades. As our ability to identify larval sources develops, the consequences of connectivity are garnering more consideration. Attention to transport and connectivity issues has increased dramatically in the past decade, fueled by changing motivations that now include management of fisheries resources, understanding of the spread of invasive species, conservation through the design of marine reserves, and prediction of climate-change effects. Current progress involves both technological advances and the integration of disciplines and approaches. This review focuses on insights gained from physical modeling, chemical tracking, and genetic approaches. I consider how new findings are motivating paradigm shifts concerning (1) life-history consequences; (2) the openness of marine populations, self-recruitment, and population connectivity; (3) the role of behavior; and (4) the significance of variability in space and time. A challenge for the future will be to integrate methods that address dispersal on short (intragenerational) timescales such as elemental fingerprinting and numerical simulations with those that reflect longer timescales such as gene flow estimates and demographic modeling. Recognition and treatment of the continuum between ecological and evolutionary timescales will be necessary to advance the mechanistic understanding of larval and population dynamics.

2007
Thorrold, SR, Zacherl DC, Levin LA.  2007.  Population connectivity and larval dispersal using geochemical signatures in calcified structures. Oceanography. 20:80-89.   dx.doi.org/10.5670/oceanog.2007.31   AbstractWebsite

The importance of larval dispersal to the population dynamics and biogeography of marine organisms has been recognized for almost a century (Hjort, 1914; Thorson, 1950). More recently, theoretical studies have highlighted the role that connectivity may play in determining the resilience of marine populations (Hastings and Botsford, 2006). Effective spatial management of marine capture fisheries, including the design of marine reserve networks, also requires an understanding of population connectivity (Sale et al., 2005). However, remarkably few empirical estimates of larval dispersal or population connectivity in ocean environments exist.

2010
Carson, HS, Lopez-Duarte PC, Rasmussen L, Wang DX, Levin LA.  2010.  Reproductive timing alters population connectivity in marine metapopulations. Current Biology. 20:1926-1931.   10.1016/j.cub.2010.09.057   AbstractWebsite

Populations of most marine organisms are connected by the dispersal of larval stages, with profound implications for marine conservation [1]. Because of the extreme effort needed to empirically measure larval exchange, multispecies conservation efforts must estimate connectivity by extrapolation using taxonomy, adult distribution, life history, behavior, or phenology. Using a 6-year record of connectivity realized through trace-elemental fingerprinting of larval shells, we document the seasonal and interannual variability of larval exchange for two congeneric mussel species with overlapping but distinct distribution, life history, and reproduction timing. We reveal consistent autumn poleward movement and spring equatorward movement for both species, coincident with near-shore surface currents. However, because the major reproductive seasons differ, the dominant source-sink dynamics of these two congeneric species are nearly opposite. Consideration of present and future reproductive timing as altered by climate change is crucial to marine connectivity and conservation, especially for the numerous coastal areas subject to seasonal current reversals.

2011
Fodrie, FJ, Becker BJ, Levin LA, Gruenthal K, McMillan PA.  2011.  Connectivity clues from short-term variability in settlement and geochemical tags of mytilid mussels. Journal of Sea Research. 65:141-150.   10.1016/j.seares.2010.09.001   AbstractWebsite

The use of geochemical tags in calcified structures of fish and invertebrates is an exciting tool for investigating larval population connectivity. Tag evaluation over relatively short intervals (weeks) may detect environmental and ecological variability at a temporal scale highly relevant to larval transport and settlement. We collected newly settled mussels (Mytilus californianus and M. galloprovincialis) weekly during winter/spring of 2002 along the coast of San Diego, CA, USA, at sites on the exposed coast (SIO) and in a protected coastal bay (HI), to investigate temporal patterns of geochemical tags in mussel shells. Analyses of post-settlement shell via LA-ICP-MS revealed statistically significant temporal variability for all elements we examined (Mg, Mn, Cu, Sr, Cd, Ba, Pb and U). Despite this, our ability to distinguish multielemental signatures between sites was largely conserved. Throughout our 13-week study, SIO and HI mussels could be chemically distinguished from one another in 78-87% of all cases. Settlement varied between 2 and 27 settlers grambyssus(-1) week(-1) at 510 and HI, and both sites were characterized by 2-3 weeks with "high" settlement. Geochemical tags recorded in early larval shell of newly settled mussels differed between "high" and "low" settlement weeks at both sites (MANOVA), driven by Mg and Sr at SIO (p = 0.013) and Sr, Cd, Ba and Pb at HI (p < 0.001). These data imply that shifts in larval sources or transport corridors were responsible for observed settlement variation, rather than increased larval production. In particular, increased settlement at HI was observed concurrent with the appearance of geochemical tags (e.g., elevated Cd), suggesting that those larvae were retained in upwelled water near the mouth of the bay. Such shifts may reflect short-term changes in connectivity among sites due to altered transport corridors, and influence the demography of local populations. (C) 2010 Elsevier B.V. All rights reserved.

2014
Cook, GS, Parnell PE, Levin LA.  2014.  Population connectivity shifts at high frequency within an open-coast marine protected area network. Plos One. 9   10.1371/journal.pone.0103654   AbstractWebsite

A complete understanding of population connectivity via larval dispersal is of great value to the effective design and management of marine protected areas (MPA). However empirical estimates of larval dispersal distance, self-recruitment, and within season variability of population connectivity patterns and their influence on metapopulation structure remain rare. We used high-resolution otolith microchemistry data from the temperate reef fish Hypsypops rubicundus to explore biweekly, seasonal, and annual connectivity patterns in an open-coast MPA network. The three MPAs, spanning 46 km along the southern California coastline were connected by larval dispersal, but the magnitude and direction of connections reversed between 2008 and 2009. Self-recruitment, i.e. spawning, dispersal, and settlement to the same location, was observed at two locations, one of which is a MPA. Self-recruitment to this MPA ranged from 50-84%; within the entire 60 km study region, self-recruitment accounted for 45% of all individuals settling to study reefs. On biweekly time scales we observed directional variability in alongshore current data and larval dispersal trajectories; if viewed in isolation these data suggest the system behaves as a source-sink metapopulation. However aggregate biweekly data over two years reveal a reef network in which H. rubicundus behaves more like a well-mixed metapopulation. As one of the few empirical studies of population connectivity within a temperate open coast reef network, this work can inform the MPA design process, implementation of ecosystem based management plans, and facilitate conservation decisions.