Publications

Export 16 results:
Sort by: Author Title Type [ Year  (Desc)]
2017
Sweetman, AK, Thurber AR, Smith CR, Levin LA, Mora C, Wei CL, Gooday AJ, Jones DOB, Rex M, Yasuhara M, Ingels J, Ruhl HA, Frieder CA, Danovaro R, Wurzberg L, Baco A, Grupe BM, Pasulka A, Meyer KS, Dunlop KM, Henry LA, Roberts JM.  2017.  Major impacts of climate change on deep-sea benthic ecosystems. Elementa-Science of the Anthropocene. 5:1-23.   10.1525/elementa.203   AbstractWebsite

The deep sea encompasses the largest ecosystems on Earth. Although poorly known, deep seafloor ecosystems provide services that are vitally important to the entire ocean and biosphere. Rising atmospheric greenhouse gases are bringing about significant changes in the environmental properties of the ocean realm in terms of water column oxygenation, temperature, pH and food supply, with concomitant impacts on deep-sea ecosystems. Projections suggest that abyssal (3000-6000 m) ocean temperatures could increase by 1 degrees C over the next 84 years, while abyssal seafloor habitats under areas of deep-water formation may experience reductions in water column oxygen concentrations by as much as 0.03 mL L-1 by 2100. Bathyal depths (200-3000 m) worldwide will undergo the most significant reductions in pH in all oceans by the year 2100 (0.29 to 0.37 pH units). O-2 concentrations will also decline in the bathyal NE Pacific and Southern Oceans, with losses up to 3.7% or more, especially at intermediate depths. Another important environmental parameter, the flux of particulate organic matter to the seafloor, is likely to decline significantly in most oceans, most notably in the abyssal and bathyal Indian Ocean where it is predicted to decrease by 40-55% by the end of the century. Unfortunately, how these major changes will affect deep-seafloor ecosystems is, in some cases, very poorly understood. In this paper, we provide a detailed overview of the impacts of these changing environmental parameters on deep-seafloor ecosystems that will most likely be seen by 2100 in continental margin, abyssal and polar settings. We also consider how these changes may combine with other anthropogenic stressors (e.g., fishing, mineral mining, oil and gas extraction) to further impact deep-seafloor ecosystems and discuss the possible societal implications.

2015
Gallo, ND, Cameron J, Hardy K, Fryer P, Bartlett DH, Levin LA.  2015.  Submersible- and lander-observed community patterns in the Mariana and New Britain trenches: Influence of productivity and depth on epibenthic and scavenging communities. Deep-Sea Research Part I-Oceanographic Research Papers. 99:119-133.   10.1016/j.dsr.2014.12.012   AbstractWebsite

Deep-sea trenches remain one of the least explored ocean ecosystems due to the unique challenges of sampling at great depths. Five submersible dives conducted using the DEEPSEA CHALLENGER submersible generated video of undisturbed deep-sea communities at bathyal (994 m), abyssal (3755 m), and hadal (8228 m) depths in the New Britain Trench, bathyal depths near the Ulithi atoll (1192 m), and hadal depths in the Mariana Trench Challenger Deep (10908 m). The New Britain Trench is overlain by waters with higher net primary productivity (similar to 3-fold) than the Mariana Trench and nearby Ulithi, and receives substantially more allochthonous input from terrestrial sources, based on the presence of terrestrial debris in submersible video footage. Comparisons between trenches addressed how differences in productivity regime influence benthic and demersal deep-sea community structure. In addition, the scavenger community was studied using paired lander deployments to the New Britain (8233 m) and Mariana (10918 m) trenches. Differences in allochthonous input were reflected in epibenthic community abundance, biodiversity, and lifestyle representation. More productive locations were characterized by higher faunal abundances (similar to 2-fold) at both bathyal and hadal depths. In contrast, biodiversity trends showed a unimodal pattern with more food-rich areas exhibiting reduced bathyal diversity and elevated hadal diversity. Hadal scavenging communities exhibited similar higher abundance but also similar to 3-fold higher species richness in the more food-rich New Britain Trench compared to the Mariana Trench. High species- and phylum-level diversity observed in the New Britain Trench suggest that trench environments may foster higher megafaunal biodiversity than surrounding abyssal depths if food is not limiting. However, the absence of fish at our hadal sites suggests that certain groups do have physiological depth limits. Submersible video footage allowed novel in situ observation of holothurian orientation, jellyfish feeding behavior as well as lifestyle preferences for substrate, seafloor and overlying water. This study documents previously unreported species in the New Britain Trench, including an ulmariid scyphozoan (8233 m) and an acrocirrid polychaete (994 m), and reports the first observation of an abundant population of elpidiid holothurians in the Mariana Trench (10908 m). It also provides the first megafaunal community analysis of the world's deepest epibenthic community in the Mariana Trench Challenger Deep, which was composed of elpidiid holothurians, amphipods, and xenophyophores. (C) 2015 The Authors. Published by Elsevier Ltd.

2014
Neira, C, Levin LA, Mendoza G, Zirino A.  2014.  Alteration of benthic communities associated with copper contamination linked to boat moorings. Marine Ecology-an Evolutionary Perspective. 35:46-66.   10.1111/maec.12054   AbstractWebsite

Although copper (Cu) is an essential element for life, leaching from boat paint can cause excess environmental loading in enclosed marinas. The effects of copper contamination on benthic macrofaunal communities were examined in three San Diego Bay marinas (America's Cup, Harbor Island West and East) in Southern California, USA. The distribution of Cu concentration in sediments exhibited a clear spatial gradient, with hotspots created by the presence of boats, which in two marinas exceeded the effect range medium (ERM). Elevated sediment Cu was associated with differences in benthic assemblages, reduced species richness and enhanced dominance in America's Cup and Harbor Island West, whereas Harbor Island East did not appear to be affected. At sites without boats there were greater abundances of some amphipods such as the species Desdimelita sp., Harpinia sp., Aoroides sp., Corophium sp., Podocerus sp., bivalves such as Lyonsia californica, Musculista senhousia, Macoma sp., and polychaetes such as Diplocirrus sp. In contrast, at sites with boats, densities of Pseudopolydora paucibranchiata, Polydora nuchalis, Euchone limnicola, Exogone lourei, Tubificoides spp. were enhanced. The limited impact on Harbor Island East suggests not only lower Cu input rates and increased water flushing and mixing, but also the presence of adequate defense mechanisms that regulate availability and mitigate toxic impacts. At all three marinas, Cu in tissues of several macrobenthic species exhibited Cu bioaccumulation above levels found in the surrounding environment. The annelids Lumbrineris sp. and Tubificoides spp., and the amphipod Desdimelita sp. contained high levels of Cu, suggesting they function as Cu bioaccumulators. The spionid polychaetes Polydora nuchalis and Pseudopolydora paucibranchiata had much lower Cu concentrations than surrounding sediments, suggesting they function as Cu bioregulators. The macrobenthic invertebrates in San Diego Bay marinas that tolerate Cu pollution (e.g. P.nuchalis, P.paucibranchiata, Euchone limnicola, Typosyllis sp., Tubificoides sp.) may function as indicators of high-Cu conditions, whereas the presence of Cu-sensitive species (e.g. Podocerus sp., Aoroides sp., Harpinia sp., Macoma sp., Lyonsia californica) may indicate healthier conditions (less Cu-stressed). Parallel responses by faunas of Shelter Island Yacht Basin, also in San Diego Bay, suggest potential for development of regional Cu contamination assessment criteria, and call for functional comparisons with other marinas and coastal water bodies.

2009
Levin, LA, Mendoza GF, Konotchick T, Lee R.  2009.  Macrobenthos community structure and trophic relationships within active and inactive Pacific hydrothermal sediments. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 56:1632-1648.   10.1016/j.dsr2.2009.05.010   AbstractWebsite

Hydrothermal fluids passing through sediments create a habitat hypothesized to influence the community structure of infaunal macrobenthos. Here we characterize the density, biomass, species composition, diversity, distributions, lifestyle, and nutritional sources of macroinfauna in hydrothermal sediments in NE and SW Pacific settings, and draw comparisons in search of faunal attributes characteristic of this habitat. There is increasing likelihood that seafloor massive sulfide deposits, associated with active and inactive hydrothermal venting, will be mined commercially. This creates a growing imperative for a more thorough understanding of the structure, dynamics, and resilience of the associated sediment faunas, and has stimulated the research presented here. Macrobenthic assemblages were studied at Manus Basin (1430-1634 m, Papua New Guinea [PNG]) as a function of location (South Su vs. Solwara 1), and hydrothermal activity (active vs. inactive), and at Middle Valley (2406-2411 m, near Juan de Fuca Ridge) as a function of habitat (active clam bed, microbial mat, hot mud, inactive background sediment). The studies conducted in PNG formed part of the environmental impact assessment work for the Solwara 1 Project of Nautilus Minerals Niugini Limited. We hypothesized that hydrothermally active sites should support (a) higher densities and biomass, (b) greater dominance and lower diversity, (c) a higher fraction of deposit feeders, and (d) greater isotopic evidence for chemosynthetic food sources than inactive sites. Manus Basin macrofauna generally had low density (<1000ind.m(-2)) and low biomass (0.1-1.07gm(-2)), except for the South Su active site, which had higher density (3494ind.m(-2)) and biomass (11.94gm(-2)), greater dominance (R1D=76%), lower diversity and more spatial (between-core) homogeneity than the Solwara 1 and South Su inactive sites. Dominant taxa at Manus Basin were Spionidae (Prionospio sp.) in active sediments, and tanaids and deposit-feeding nuculanoid bivalves in active and inactive sediments. At Middle Valley, hot mud sediments supported few animals (1011 ind m(-2)) and low biomass (1.34g m(-2)), while active clam bed sediments supported a high-density (19,984indm(-2)), high-biomass (4.46gm(-2)), low-diversity assemblage comprised of largely orbiniid and syllid polychaetes. Microbial mat sediments had the most diverse assemblage (mainly orbiniid, syllid, dorvilleid, and ampharetid polychaetes) with intermediate densities (8191 ind m(-2)) and high biomass (4.23 g m(-2)). Fauna at both Manus Basin active sites had heavy delta(13)C signatures (-17 parts per thousand to -13 parts per thousand) indicative of chemosynthetic, TCA-cycle microbes at the base of the food chain. In contrast, photosynthesis and sulfide oxidation appear to fuel most of the fauna at Manus Basin inactive sites (delta(13)C = -29 parts per thousand to -20 parts per thousand) and Middle Valley active clam beds and microbial mats (delta(13)C = -36 parts per thousand to -20 parts per thousand). The two hydrothermal regions, located at opposite ends of the Pacific Ocean, supported different habitats, sharing few taxa at the generic or family level, but both exhibited elevated infaunal density and high dominance at selected sites. Subsurface-deposit feeding and bacterivory were prevalent feeding modes. Both the Manus Basin and Middle Valley assemblages exhibit significant within-region heterogeneity, apparently conferred by variations in hydrothermal activity and associaed biogenic habitats. (C) 2009 Elsevier Ltd. All rights reserved.

Cowie, GL, Levin LA.  2009.  Benthic biological and biogeochemical patterns and processes across an oxygen minimum zone (Pakistan margin, NE Arabian Sea). Deep-Sea Research Part Ii-Topical Studies in Oceanography. 56:261-270.   10.1016/j.dsr2.2008.10.001   AbstractWebsite

Oxygen minimum zones (OMZs) impinging on continental margins present sharp gradients ideal for testing environmental factors thought to influence C cycling and other benthic processes, and for identifying the roles that biota play in these processes. Here we introduce the objectives and initial results of a multinational research program designed to address the influences of water depth, the OMZ (similar to 150-1300 m), and organic matter (OM) availability on benthic communities and processes across the Pakistan Margin of the Arabian Sea. Hydrologic, sediment, and faunal characterizations were combined with in-situ and shipboard experiments to quantify and compare biogeochemical processes and fluxes, OM burial efficiency, and the contributions of benthic communities, across the OMZ. In this introductory paper, we briefly review previous related work in the Arabian Sea, building the rationale for integrative biogeochemical and ecological process studies. This is followed by a summary of individual volume contributions and a brief synthesis of results. Five primary stations were studied, at 140, 300, 940,1200 and 1850 m water depth, with sampling in March-May (intermonsoon) and August-October (late-to-postmonsoon) 2003. Taken together, the contributed papers demonstrate distinct cross-margin gradients, not only in oxygenation and sediment OM content, but in benthic community structure and function, including microbial processes, the extent of bioturbation, and faunal roles in C cycling. Hydrographic studies demonstrated changes in the intensity and extent of the OMZ during the SW monsoon, with a shoaling of the upper OMZ boundary that engulfed the previously oxygenated 140-m site. Oxygen profiling and microbial process rate determinations demonstrated dramatic differences in oxygen penetration and consumption across the margin, and in the relative importance of anaerobic processes, but surprisingly little seasonal change. A broad maximum in sediment OM content occurred on the upper slope, roughly coincident with the OMZ; but the otherwise poor correlation with bottom-water oxygen concentrations indicated that other factors are important in determining sediment OM distributions. Downcore profiles generally showed little clear evidence of in-situ OM alteration, and there was little sign of OM enrichment resulting from the southwest monsoon in sediments collected in the late-to-postmonsoon sampling. This is interpreted to be due to rapid cycling of labile OM. Organic geochemical studies confirmed that sediment OM is overwhelmingly of marine origin across the margin, but also that it is heavily altered, with only small changes in degradation state across the OMZ. More negative stable C isotopic compositions in surficial sediments at hypoxic sites within the OMZ core are attributed to a chemosynthetic bacterial imprint. Dramatic changes in benthic community structure occurred across the lower OMZ transition, apparently related to OM availability and quality as well as to DO concentrations. High-resolution sampling, biomarkers and isotope tracer studies revealed that oxygen availability appears to exert threshold-type controls on benthic community structure and early faunal C processing. Biomarker studies also provided evidence of faunal influence on sediment OM composition. Together, the results offer strong evidence that benthic fauna at sites across the margin play important roles in the early cycling of sediment OM through differential feeding and bioturbation activities. (C) 2008 Published by Elsevier Ltd.

Gooday, AJ, Levin LA, da Silva AA, Bett BJ, Cowie GL, Dissard D, Gage JD, Hughes DJ, Jeffreys R, Lamont PA, Larkin KE, Murty SJ, Schumacher S, Whitcraft C, Woulds C.  2009.  Faunal responses to oxygen gradients on the Pakistan margin: A comparison of foraminiferans, macrofauna and megafauna. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 56:488-502.   10.1016/j.dsr2.2008.10.003   AbstractWebsite

The Pakistan Margin is characterised by a strong mid-water oxygen minimum zone (OMZ) that intercepts the seabed at bathyal depths (150-1300 m). We investigated whether faunal abundance and diversity trends were similar among protists (foraminiferans and gromiids), metazoan macrofauna and megafauna along a transect (140-1850 m water depth) across the OMZ during the 2003 intermonsoon (March-May) and late/post-monsoon (August-October) seasons. All groups exhibited some drop in abundance in the OMZ core (250-500 m water depth; O(2): 0.10-0.13 mL L(-1) = 4.46-5.80 mu M) but to differing degrees. Densities of foraminiferans >63 mu m were slightly depressed at 300 m, peaked at 738 m, and were much lower at deeper stations. Foraminiferans >300 mu m were the overwhelmingly dominant macrofaunal organisms in the OMZ core. Macrofaunal metazoans reached maximum densities at 140 m depth, with additional peaks at 850, 940 and 1850 m where foraminiferans were less abundant. The polychaete Linopherus sp. was responsible for a macrofaunal biomass peak at 950 m. Apart from large swimming animals (fish and natant decapods), metazoan megafauna were absent between 300 and 900 m (O(2) <0.14-0.15 mLL(-1) = 6.25-6.69 mu M) but were represented by a huge, ophiuroid-dominated abundance peak at 1000 m (O(2) similar to 0.15-0.18 mLL(-1) = 6.69-8.03 mu M). Gromiid protists were confined largely to depths below 1150 m (O(2) > 0.2 mLL(-1) = 8.92 mu M). The progressively deeper abundance peaks for foraminiferans (> 63 mu m), Linopherus sp. and ophiuroids probably represent lower OMZ boundary edge effects and suggest a link between body size and tolerance of hypoxia. Macro- and megafaunal organisms collected between 800 and 1100 m were dominated by a succession of different taxa, indicating that the lower part of the OMZ is also a region of rapid faunal change. Species diversity was depressed in all groups in the OMZ core, but this was much more pronounced for macrofauna and megafauna than for foraminiferans. Oxygen levels strongly influenced the taxonomic composition of all faunal groups. Calcareous foraminiferans dominated the seasonally and permanently hypoxic sites (136-300 m); agglutinated foraminiferans were relatively more abundant at deeper stations where oxygen concentrations were >0.13 mLL(-1)( = 5.80 mu M). Polychaetes were the main macrofaunal taxon within the OMZ; calcareous macrofauna, and megafauna (molluscs and echinoderms) were rare or absent where oxygen levels were lowest. The rarity of larger animals between 300 and 700 m on the Pakistan Margin, compared with the abundant macrofauna in the OMZ core off Oman, is the most notable contrast between the two sides of the Arabian Sea. This difference probably reflects the slightly higher oxygen levels and better food quality on the western side. (C) 2008 Published by Elsevier Ltd.

Levin, LA, Whitcraft CR, Mendoza GF, Gonzalez JP, Cowie G.  2009.  Oxygen and organic matter thresholds for benthic faunal activity on the Pakistan margin oxygen minimum zone (700-1100 m). Deep-Sea Research Part Ii-Topical Studies in Oceanography. 56:449-471.   10.1016/j.dsr2.2008.05.032   AbstractWebsite

A transition from fully laminated to highly bioturbated sediments on continental margins is thought to derive from increased animal activity associated with increasing bottom-water oxygen concentration. We examined faunal community responses to oxygen and organic matter gradients across the lower oxygen minimum zone (OMZ) on the bathyal Pakistan margin, where sediments grade from fully laminated sediment at 700m (0.12 mLL(-1) O(2) [5 mu M]) to highly bioturbated sediment at 1100 m (0.23 mLL(-1) O(2) [10 mu M]). High-resolution sampling of the seafloor (every 50 m water depth) was conducted along a single transect during inter- and post-monsoon periods in 2003 to address (a) the existence of oxygen thresholds regulating macrofaunal abundance, composition, diversity and lifestyles, (b) the interactive effects of organic matter quantity and quality, (c) associated community effects on sediment structure, and (d) potential seasonality in these processes. Macrofaunal biomass and bioturbation depth were positively correlated with organic matter availability, which peaked at 850-950 m (3.39-3.53% Org. Q. In contrast, macrofaunal diversity (HI), dominance (RID), and burrow number exhibited threshold responses at oxygen concentrations of 0.12-0.20 mLL(-1) [5-9 mu M]), with few animals and highly laminated sediments present below this concentration and most taxa present in fully bioturbated sediments above it. The highly mobile, burrowing amphinomid polychaete Linopherus sp. exhibited almost complete dominance and high density at 750-850 m (0.12-0.14 mLL(-1) O(2) [5-6 mu M]), but despite its activity, sediment laminae remained faintly visible. Formation of permanent burrows and detritivory were dominant macrofaunal lifestyles within the OMZ, allowing laminae to persist at surprisingly high animal density and biomass. Results reflect a shift from organic matter to oxygen regulation of body size and biogenic structures following the monsoon. This study suggests that for assemblages evolving under permanent severe hypoxia, food availability remains a significant determinant of animal abundance and biogenic structure depth. Oxygen influences patterns of diversity and dominance and interacts with organic matter to generate abrupt faunal transitions on the Pakistan margin. (C) 2008 Elsevier Ltd. All rights reserved.

2006
Arntz, WE, Gallardo VA, Gutierrez D, Isla E, Levin LA, Mendo J, Neira C, Rowe GT, Tarazona J, Wolff M.  2006.  El NiƱo and similar perturbation effects on the benthos of the Humboldt, California, and Benguela Current upwelling ecosystems. Advances in Geosciences. 6:243-265.: European Geosciences Union, c/o E.O.S.T. 5, rue Rene Descartes Strasbourg Cedex 67084 France, [mailto:egu.production@copernicus.org], [URL:http://www.copernicus.org/EGU] AbstractWebsite

To a certain degree, Eastern Boundary Current (EBC) ecosystems are similar: Cold bottom water from moderate depths, rich in nutrients, is transported to the euphotic zone by a combination of trade winds, Coriolis force and Ekman transport. The resultant high primary production fuels a rich secondary production in the upper pelagic and nearshore zones, but where O sub(2) exchange is restricted, it creates oxygen minimum zones (OMZs) at shelf and upper slope (Humboldt and Benguela Current) or slope depths (California Current). These hypoxic zones host a specifically adapted, small macro- and meiofauna together with giant sulphur bacteria that use nitrate to oxydise H sub(2)S. In all EBC, small polychaetes, large nematodes and other opportunistic benthic species have adapted to the hypoxic conditions and co-exist with sulphur bacteria, which seem to be particularly dominant off Peru and Chile. However, a massive reduction of macrobenthos occurs in the core of the OMZ. In the Humboldt Current area the OMZ ranges between <100 and about 600 m, with decreasing thickness in a poleward direction. The OMZ merges into better oxygenated zones towards the deep sea, where large cold-water mega- and macrofauna occupy a dominant role as in the nearshore strip. The Benguela Current OMZ has a similar upper limit but remains shallower. It also hosts giant sulphur bacteria but little is known about the benthic fauna. However, sulphur eruptions and intense hypoxia might preclude the coexistence of significant mega- und macrobenthos. Conversely, off North America the upper limit of the OMZ is considerably deeper (e.g., 500-600 m off California and Oregon), and the lower boundary may exceed 1000m. The properties described are valid for very cold and cold (La Nina and "normal") ENSO conditions with effective upwelling of nutrient-rich bottom water. During warm (El Nino) episodes, warm water masses of low oxygen concentration from oceanic and equatorial regions enter the upwelling zones, bringing a variety of (sub)tropical immigrants. The autochthonous benthic fauna emigrates to deeper water or poleward, or suffers mortality. However, some local macrofaunal species experience important population proliferations, presumably due to improved oxygenation (in the southern hemisphere), higher temperature tolerance, reduced competition or the capability to use different food. Both these negative and positive effects of el Nino influence local artisanal fisheries and the livelihood of coastal populations. In the Humboldt Current system the hypoxic seafloor at outer shelf depths receives important flushing from the equatorial zone, causing havoc on the sulphur bacteria mats and immediate recolonisation of the sediments by mega- and macrofauna. Conversely, off California, the intruding equatorial water masses appear to have lower oxygen than ambient waters, and may cause oxygen deficiency at upper slope depths. Effects of this change have not been studied in detail, although shrimp and other taxa appear to alter their distribution on the continental margin. Other properties and reactions of the two Pacific EBC benthic ecosystems to el Nino seem to differ, too, as does the overall impact of major episodes (e.g., 1982/1983(1984) vs. 1997/1998). The relation of the "Benguela Nino" to ENSO seems unclear although many Pacific- Atlantic ocean and atmosphere teleconnections have been described. Warm, low- oxygen equatorial water seems to be transported into the upwelling area by similar mechanisms as in the Pacific, but most major impacts on the eukaryotic biota obviously come from other, independent perturbations such as an extreme eutrophication of the sediments ensuing in sulphidic eruptions and toxic algal blooms. Similarities and differences of the Humboldt and California Current benthic ecosystems are discussed with particular reference to ENSO impacts since 1972/73. Where there are data available, the authors include the Benguela Current ecosystem as another important, non-Pacific EBC, which also suffers from the effects of hypoxia.

2005
Neira, C, Levin LA, Grosholz ED.  2005.  Benthic macrofaunal communities of three sites in San Francisco Bay invaded by hybrid Spartina, with comparison to uninvaded habitats. Marine Ecology-Progress Series. 292:111-126.   10.3354/meps292111   AbstractWebsite

A hybrid cordgrass, formed from a cross between Spartina alterniflora (Atlantic cordgrass) and S. foliosa (Pacific cordgrass), has recently spread within the intertidal zone of south San Francisco Bay. Sediment properties and macroinfaunal community structure were compared in patches invaded by Spartina hybrid and adjacent uninvaded patches at 3 sites in San Francisco Bay (2 tidal flats and 1 Salicornia marsh). We hypothesized that (1) sediments vegetated by Spartina hybrid would have reduced sediment grain size, higher organic matter content, lower redox potential, lower salinity and reduced microalgal biomass relative to adjacent unvegetated tidal flat sediments, and (2) that differences in the sediment environment would correspond to changes in the infaunal invertebrate community structure and feeding modes. We observed 75 % lower total macro-faunal density and lower species richness in Spartina-vegetated sediments at Elsie Roemer (30 yr old invasion) than in an adjacent unvegetated tidal flat. This was due to lower densities of surface-feeding amphipods, bivalves, cirratulid and spionid polychaetes. The proportional representation of subsurface-deposit feeders was greater in Spartina patches than in unvegetated sediments. At a more recently invaded site (Roberts Landing; 15 yr invasion), Spartina patches differed from tidal flat sediments in composition, but not in abundance. Native (Salicornia) and Spartina patches exhibited similar sediment properties at San Mateo, where the Spartina hybrid invaded 8 to 10 yr earlier. No differences were detected in densities or proportions of surface- or subsurface-deposit feeders, but the proportion of carnivores/omnivores and grazers increased in the hybrid-invaded patches. These studies suggest that the invasive Spartina hybrid in south San Francisco Bay can have differing effects on sediment ecosystems, possibly depending on the location, age, or type of habitats involved.

2002
Levin, L, Gutierrez D, Rathburn A, Neira C, Sellanes J, Munoz P, Gallardo V, Salamanca M.  2002.  Benthic processes on the Peru margin: a transect across the oxygen minimum zone during the 1997-98 El Nino. Progress in Oceanography. 53:1-27.   10.1016/s0079-6611(02)00022-8   AbstractWebsite

Oxygen minimum zones (OMZs) are widespread features in the most productive regions of the world ocean. A holistic view of benthic responses to OMZ conditions will improve our ability to predict ecosystem-level consequences of climatic trends that influence oxygen availability, such as global warming or ENSO-related events. Four stations off Callao, Peru (-12'S, Station A, 305 m; Station B, 562 m; Station C, 830 nu and Station D, 1210 m) were sampled to examine the influence of the low bottom-water oxygen concentration and high organic-matter availability within the OMZ (O(2) < 0.5 ml L(-1)) on sediments, benthic communities, and bioturbation. Sampling took place during early January 1998, an intense El Ni (n) over tildeo period associated with higher-than-normal levels of O(2) on the shelf and upper slope. Peru slope sediments were highly heterogeneous. Sediment total organic carbon content exceeded 16%, lamination was present below 6 cm depth, and filamentous sulfur bacteria (Thioploca spp.) were present at Station A, (305 m, 0, < 0.02 ml L(-1)). Deeper sites contained phosphorite crusts or pellets and exhibited greater bottom-water oxygenation and lower content and quality of organic matter. X-radiographs and (210)Pb and (234)Th profiles suggested the dominance of lateral transport and bioturbation over pelagic sedimentation at the mid- and lower slope sites. Macrofauna, metazoan meiofauna and foraminifera exhibited coherence of density patterns across stations, with maximal densities (and for macrofauna, reduced diversity) at Station A, where bottom-water oxygen concentration was lowest and sediment labile organic matter content (LOC: sum of protein, carbohydrate and lipid carbon) was greatest. Metazoan and protozoan meiofaunal densities were positively correlated with sediment LOC. The taxa most tolerant of nearly anoxic, organic-rich conditions within the Peru OMZ were calcareous foraminifera, nematodes and gutless phallodrilinid (symbiont-bearing) oligochaetes. Agglutinated foraminifera, harpacticoid copepods, polychaetes and many other macrofaunal taxa increased in relative abundance below the OMZ. During the study (midpoint of the 1997-98 El Ni (n) over tildeo), the upper OMZ boundary exhibited a significant deepening (to 190 m) relative to 'normal', non-El Ni (n) over tildeo conditions (< 100 m), possibly causing a mild, transient oxygenation over the upper slope (200-300 m) and reduction of the organic particle flux to the seabed. Future sampling may determine whether the Peru margin system exhibits dynamic responses to changing ENSO-related conditions. (C) 2002 Elsevier Science Ltd. All rights reserved.

2001
Talley, TS, Crooks JA, Levin LA.  2001.  Habitat utilization and alteration by the invasive burrowing isopod, Sphaeroma quoyanum, in California salt marshes. Marine Biology. 138:561-573.   10.1007/s002270000472   AbstractWebsite

In recent years the pace of exotic species introduction and invasion has accelerated, particularly in estuaries and wetlands. Species invasions may affect coastal ecosystems in many ways. Alteration of sedimentary environments, through structure formation and burrowing, has particularly dramatic effects on coastal habitats. This study examines modification of channel bank and marsh edge habitat by the burrowing Australasian isopod Sphaeroma quoyanum Milne Edwards, in created and natural salt marshes of San Diego Bay and San Francisco Bay. Abundance and distribution patterns of this isopod species, its relationships with habitat characteristics, and its effects on sediment properties and bank erosion were examined seasonally, and in several marsh microhabitats. Mean isopod densities were 1541 and 2936 individuals per 0.25 m(2) in San Francisco Bay, and 361 and 1153 individuals per 0.25 m(2) in San Diego Bay study sites during December and July 1998, respectively. This isopod forms dense, anastomosing burrow networks. S. quoyanum densities did not differ as a function of location within creeks or location in natural versus created marshes. Burrows, which are on average 6 mm wide and 2 cm long, were associated with firm sediments containing high detrital biomass. Although erosion is a natural process along salt marsh banks, enclosure experiments demonstrated that isopod activities can enhance sediment loss from banks. In areas infested with S. quoyanum, losses may exceed 100 cm of marsh edge per year. The effects of habitat alteration by this invading species are likely to increase in severity in the coastal zone as these ecosystems become degraded.

Levin, LA, Etter RJ, Rex MA, Gooday AJ, Smith CR, Pineda J, Stuart CT, Hessler RR, Pawson D.  2001.  Environmental influences on regional deep-sea species diversity. Annual Review of Ecology and Systematics. 32:51-93.   10.1146/annurev.ecolsys.32.081501.114002   AbstractWebsite

Most of our knowledge of biodiversity and its causes in the deep-sea benthos derives from regional-scale sampling studies of the macrofauna. Improved sampling methods and the expansion of investigations into a wide variety of habitats have revolutionized our understanding of the deep sea. Local species diversity shows clear geographic variation on spatial scales of 100-1000 km. Recent sampling programs have revealed unexpected complexity in community structure at the landscape level that is associated with large-scale oceanographic processes and their environmental consequences. We review the relationships between variation in local species diversity and the regional-scale phenomena of boundary constraints, gradients of productivity, sediment heterogeneity, oxygen availability, hydrodynamic regimes, and catastrophic physical disturbance. We present a conceptual model of how these interdependent environmental factors shape regional-scale variation in local diversity. Local communities in the deep sea may be composed of species that exist as metapopulations whose regional distribution depends on a balance among global-scale, landscape-scale, and small-scale dynamics. Environmental gradients may form geographic patterns of diversity by influencing local processes such as predation, resource partitioning, competitive exclusion, and facilitation that determine species coexistence. The measurement of deep-sea species diversity remains a vital issue in comparing geographic patterns and evaluating their potential causes. Recent assessments of diversity using species accumulation curves with randomly pooled samples confirm the often-disputed claim that the deep sea supports higher diversity than the continental shelf. However, more intensive quantitative sampling is required to fully characterize the diversity of deep-sea sediments, the most extensive habitat on Earth. Once considered to be constant, spatially uniform, and isolated, deep-sea sediments are now recognized as a dynamic, richly textured environment that is inextricably linked to the global biosphere. Regional studies of the last two decades provide the empirical background necessary to formulate and test specific hypotheses of causality by controlled sampling designs and experimental approaches.

1998
Smith, CR, Levin LA, Mullineaux LS.  1998.  Deep-sea biodiversity: a tribute to Robert R. Hessler. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 45:1-11.   10.1016/s0967-0645(97)00088-x   AbstractWebsite

Through extraordinary research and training of graduate students, Robert R. Hessler has profoundly influenced our knowledge of biodiversity in the deep sea. This special volume honors his contributions and presents recent advances in the study of deep-sea biodiversity on a broad range of topics. (C) 1998 Elsevier Science Ltd. All rights reserved.

1997
Levin, LA, Edesa S.  1997.  The ecology of cirratulid mudballs on the Oman margin, northwest Arabian Sea. Marine Biology. 128:671-678.   10.1007/s002270050134   AbstractWebsite

Mudball-building cirratulid polychaetes have been described previously only from the southern California margin. During a study of oxygen minimum-zone benthos in fall 1994, we observed dense aggregations of agglutinated mudballs at 840 to 875 m on the Oman margin in the northwest Arabian Sea. These were inhabited, and probably constructed, by a cirratulid polychaete species in the genus Monticellina. The mudballs were cigar-shaped, 4.5 to 25 mm long, and positioned vertically so as to protrude several millimeters above the sediment-water interface. Total mudball densities were similar to 16000 m(-2). Occupied mudballs occurred at densities of 2112 m(-2); 89% were in the uppermost 2 cm of sediment, and no occupied mudballs were found below 10 cm. Organisms other than the cirratulid were present on 1.7% of the mudballs examined, and included epizoic polychaetes, agglutinated and calcareous Foraminifera. Various polychaetes, a nemertean and nematodes were found inside tests. Mudball abundance exhibited positive associations with densities of several paraonid polychaete species, and with densities of burrowing and subsurface-deposit-feeding polychaetes. Negative associations were observed between mudballs and three tube-building taxa (two polychaetes and an amphipod). Mudball-inhabiting cirratulids are abundant in at least two low-oxygen, margin settings. We expect further sampling of bathyal environments to yield additional systems in which cirratulid mudballs are common. Such observations are valuable because mudballs appear to represent a significant source of heterogeneity that can influence macrofaunal community structure in deep-sea sediments.

1996
Blair, NE, Levin LA, Demaster DJ, Plaia G.  1996.  The short-term fate of fresh algal carbon in continental slope sediments. Limnology and Oceanography. 41:1208-1219. AbstractWebsite

Emplacement of a tracer mixture containing C-13-labeled green algae on the sea floor of the continental slope offshore of Cape Hatteras, North Carolina, elicited a rapid response over 1.5 d from the dense benthic community. Certain deposit-feeding annelids (e.g. Scalibregma inflatum and Aricidea quadrilobata) became heavily labeled with C-13 as a result Of ingestion of the algae. C-13-labeled organic matter was transported to a depth of at least 4-5 cm into the seabed during the 1.5-d period, presumably as a consequence of a feeding-associated activity. Nonlocal transport produced subsurface peaks in organic C-13 at 2-3 cm. Dissolved inorganic C-13, produced by the oxidation of the labeled algae, penetrated to 10-cm depth. The transport of highly reactive organic matter from the sediment surface at initial velocities greater than or equal to 3 cm d(-1) is expected to be an important control of subsurface benthic processes in slope environments characterized by abundant macrofaunal populations. Anaerobic processes, which are enhanced on the Cape Hatteras slope relative to adjacent areas, may be promoted by the rapid injection of reactive material into subsurface sediments. The transport, in turn, is a consequence of the dense infaunal populations that are supported by the rapid deposition of organic carbon in this region.

1994
Demaster, DJ, Pope RH, Levin LA, Blair NE.  1994.  Biological mixing intensity and rates of organic carbon accumulation in North Carolina slope sediments. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 41:735-753.   10.1016/0967-0645(94)90045-0   AbstractWebsite

Sediment accumulation rates and biological mixing intensities were determined at three sites on the North Carolina slope based on profiles of naturally occurring C-14, Pb-210 and(234) Th. The three sites all were at a water depth of 850 m with a spacing of 150-180 km between sites. Sediment accumulation rates increase from south to north from values of 7 cm ky(-1) at Site I, to 160 cm ky(-1) at Site II, to 1100 cm ky(-1) at Site III. The organic carbon burial rate at these sites also increases in the northward direction from 0.65 (Site I) to 20 (Site II) to less than or equal to 150 g C-org m(-2) year(-1) (Site III). These data indicate that continental margin environments can exhibit highly variable carbon fluxes over relatively small distances on the seafloor. The rate of organic carbon accumulation at Site III is one of the highest values reported for the marine environment. Based on these accumulation rates and dissolved inorganic carbon flux estimates from each site, the seabed organic carbon preservation efficiency (i.e. the ratio of C-org accumulation rate to C-org deposition rate times 100) was estimated to vary from 6.0% to 54% to 88% at Sites I, II and III, respectively. The C-14 age of organic matter in surface sediments was older at Site III (1800 years BP) than at Sites I and II (800 years BP), indicating that Site III receives a greater proportion of old sediment from either up-slope areas or from terrigenous sources. Inventories of excess Th-234 (half-life of 24 days) were used as a tracer for particle flux covering the 100 days prior to the October 1989, July-August 1990 and August 1991 cruises. The mean Th-234 inventories al the three sites were 4.7 +/- 1.9, 8.4 +/- 6.3 and 23.1 +/- 7.3 dpm cm(-2) for Sites I, II and III, respectively. Profiles of excess Th-234 activity reveal that the biological mixing intensity is greater at Site III (mean D-b = 19 +/- 11 cm(2) year(-1), n = 5) than at either Site I (mean D-b = 6.0 +/- 6.2 cm(2) year(-1) n = 6) or Site II (mean D-b = 4.6 +/- 5.2 cm(2) year(-1), n = 9). In addition to the trend in mixing coefficients, the depth of particle mixing on a 100-day time scale generally is greater at Site III than at the other two sites. These observations of particle mixing intensity are consistent with the northward increase in the mean abundance of macrofauna (>300 microns) from mean values of 9400 m(-2) at Site I, to 21,400 m(-2) at Site II, to 55,500 m(-2) at Site III. For the three study sites off North Carolina, a strong correlation (R(2) = 0.99,p = 0.06) exists between macrofaunal abundance and the organic carbon deposition rate. An equally strong correlation (R(2) = 0.99, P = 0.04) occurs between macrofaunal abundance and the Th-234 inventories (index of 100-day particle flux). Fine-sand size glass tracer beads were dispersed at these three sites by submersible and then the field plots were sampled similar to 1 year later. The vertical distributions of beads at the three sites are consistent with a higher mixing intensity at Site III than at the other two sites, but the estimated mixing coefficients generally are lower than those determined from the profiles of Th-234. The slower mixing of the glass beads may be the result of their low food value and/or their relatively large size (compared to the surrounding fine-grained sediments).