Export 31 results:
Sort by: Author Title Type [ Year  (Desc)]
Levin, LA, Gage JD.  1998.  Relationships between oxygen, organic matter and the diversity of bathyal macrofauna. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 45:129-163.   10.1016/s0967-0645(97)00085-4   AbstractWebsite

The relationships of environmental factors with measures of macrobenthic community diversity were examined for the total fauna, and for polychaetes only, from 40 bathyal stations in the North Atlantic, eastern Pacific and Indian Oceans (154-3400 m). Stepwise multiple regression revealed that depth, latitude, sediment organic-carbon content and bottom-water oxygen concentration are significant factors that together explained 52-87% of the variation in macrobenthic species richness (E[s(100)]), the Shannon-Wiener index (H'), dominance (D), and evenness (J'). Percent sand and percent clay were not significant factors. After removal of depth and latitudinal effects, oxygen and organic-carbon concentrations combined accounted for 47, 67, 52 and 32% of residual variation in macrobenthic E(s(100)), H', D, and J', respectively. Organic carbon exhibited a stronger relationship than oxygen to measures of community evenness, and appeared to have more explanatory power for polychaetes than total macrobenthos. When only stations with oxygen < 1mll(-1) were considered, oxygen concentration became the dominant parameter after depth. Results suggest existence of an oxygen threshold ( < 0.45 mi l(-1)), above which oxygen effects on macrobenthic diversity are minor relative to organic matter influence, but below which oxygen becomes a critical factor. Our regression results lead us to hypothesize that for bathyal faunas, oxygen at low concentrations has more influence on species richness, while organic carbon regulates the distribution of individuals among species (community evenness). Examination of rarefaction curves for Indo-Pacific stations reveals that total macrobenthos, polychaetes, crustaceans and molluscs all exhibit reduced species richness within oxygen minimum zones (OMZs). However, representation under conditions of hypoxia varies among taxa, with polychaetes being most tolerant. Molluscs and crustaceans often (but not always) exhibit few individuals and species in OMZs, and sometimes disappear altogether, contributing to reduced macrobenthic diversity and elevated dominance in these settings. The linear negative relationship observed between bathyal species richness and sediment organic-carbon content (used here as a proxy for food availability) may represent the right side (more productive half) of the hump-shaped, diversity-productivity curve reported in other systems. These analyses suggest then are potentially strong influences of organic matter and oxygen on the diversity and composition of bathyal macrobenthos, especially in the Indo-Pacific Ocean. (C) 1998 Elsevier Science Ltd. All rights reserved.

Levin, LA, Edesa S.  1997.  The ecology of cirratulid mudballs on the Oman margin, northwest Arabian Sea. Marine Biology. 128:671-678.   10.1007/s002270050134   AbstractWebsite

Mudball-building cirratulid polychaetes have been described previously only from the southern California margin. During a study of oxygen minimum-zone benthos in fall 1994, we observed dense aggregations of agglutinated mudballs at 840 to 875 m on the Oman margin in the northwest Arabian Sea. These were inhabited, and probably constructed, by a cirratulid polychaete species in the genus Monticellina. The mudballs were cigar-shaped, 4.5 to 25 mm long, and positioned vertically so as to protrude several millimeters above the sediment-water interface. Total mudball densities were similar to 16000 m(-2). Occupied mudballs occurred at densities of 2112 m(-2); 89% were in the uppermost 2 cm of sediment, and no occupied mudballs were found below 10 cm. Organisms other than the cirratulid were present on 1.7% of the mudballs examined, and included epizoic polychaetes, agglutinated and calcareous Foraminifera. Various polychaetes, a nemertean and nematodes were found inside tests. Mudball abundance exhibited positive associations with densities of several paraonid polychaete species, and with densities of burrowing and subsurface-deposit-feeding polychaetes. Negative associations were observed between mudballs and three tube-building taxa (two polychaetes and an amphipod). Mudball-inhabiting cirratulids are abundant in at least two low-oxygen, margin settings. We expect further sampling of bathyal environments to yield additional systems in which cirratulid mudballs are common. Such observations are valuable because mudballs appear to represent a significant source of heterogeneity that can influence macrofaunal community structure in deep-sea sediments.

Levin, LA, Dibacco C.  1995.  Influence of sediment transport on short-term recolonization by seamount infauna. Marine Ecology-Progress Series. 123:163-175.   10.3354/meps123163   AbstractWebsite

Rates and mechanisms of infaunal recolonization in contrasting sediment transport regimes were examined by deploying hydrodynamically unbiased colonization trays at 2 sites similar to 2 km apart on the flat summit plain of Fieberling Guyot in the eastern Pacific Ocean. Both study sites experienced strong bottom currents and high shear velocity (u* exceeding 1.0 cm s(-1) daily). Macrofaunal recolonization of defaunated sediments on Fieberling Guyot was slow relative to observations in shallow-water sediments, but rapid compared to other unenriched deep-sea treatments. Microbial colonization was slower but macrofaunal colonization was faster at White Sand Swale (WSS, 585 m), where rippled foraminiferal sands migrate daily, than at Sea Pen Rim (SPR, 635 m), where the basaltic sands move infrequently. Total densities of macrofaunal colonizers at WSS were 31 and 75% of ambient after 7 wk and 6.4 mo, respectively; at SPR they were 6 and 49% of ambient, respectively. Over 3/4 of the colonists were polychaetes (predominantly hesionids and dorvilleids) and aplacophoran molluscs. Species richness of colonizers was comparable at SPR and WSS and did not differ substantially from ambient. Most of the species (91%) and individuals (95%) recovered in colonization trays were taxa present in background cores. However, only 25% of the taxa colonizing tray sediments occurred in trays at both WSS and SPR. Sessile species, carnivores and surface feeders were initially slow to appear in colonization trays, but after 6.4 mo, colonizer feeding modes, life habits and mobility patterns mirrored those in ambient sediments at WSS and SPR. Defaunated sediments were colonized by larvae, juveniles and adults at both sites. These experiments provide the first observations of infaunal colonization on seamounts, and in deep, high-energy settings. Passive bedload transport appears to be a dominant colonization mechanism in unstable foraminiferal sands at WSS. Based on the rapid recovery of infauna in trays and low diversity at WSS, we infer that disturbance is a natural feature of this site and that the ambient fauna of WSS retains features of early succession. Infaunal colonization is slower in the stable substrate at SPR, where physical disturbance may occur much less frequently.

Schaff, TR, Levin LA.  1994.  Spatial heterogeneity of benthos associated with biogenic structures on the North Carolina continental slope. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 41:901-&.   10.1016/0967-0645(94)90053-1   AbstractWebsite

The objective of this study was to determine if biogenic features such as mounds, pits and tubes produce small-scale (0.1-100 m) spatial heterogeneity in macrofaunal community structure on the continental slope off North Carolina at 850 m. Macrofaunal and microbial communities associated with sediment mounds, pits and level areas were compared off Cape Lookout, North Carolina. No significant differences were found in sediment microbial counts or total macrofaunal distributions. One paraonid polychaete (Levensenia gracilis) was more abundant in pits than in the other samples, and infaunal anemones exhibited depressed densities in sediment mounds. At a second site, off Cape Hatteras, North Carolina, infaunal heterogeneity associated with the tube-building foraminiferan Bathysiphon filiformis was examined by comparing an area with high tube densities (93.8 m(-2)) with an area 100 m away without tubes. No significant differences were found in the distribution and abundances of bacteria between the two areas. The only significant difference found in infaunal densities was the presence of high numbers of reproductive oligochaetes in the 5-10 cm fraction beneath tube beds. One terebellid polychaete species (Nicolea sp.), which lives exclusively on B. filiformis tubes, was absent in the non-tube area. With a few exceptions, the biogenic structures examined at these two sites appeared to exert only minor influence on macrofaunal or microbial community structure. Within each site, slope assemblages examined in this study appeared to be homogeneous on the small scales examined.

Gooday, AJ, Levin LA, Thomas CL, Hecker B.  1992.  The distribution and ecology of Bathysiphon filiformis sars and B. major de folin (Protista, Foraminiferida) on the continental slope off North Carolina. Journal of Foraminiferal Research. 22:129-146. AbstractWebsite

Two large species of the agglutinated foraminifera genus Bathysiphon are common in samples and photographs from bathyal depths on the North Carolina continental slope: B. filiformis off Cape Hatteras (588-930 m bathymetric depth) and B. major off Cape Lookout (850-1950 m depth). The sampling area, and particularly the 850 m station where B. filiformis is abundant (mean densities of 59-154 per m2), is believed to receive large inputs of organic material from various sources. This is consistent with the previously observed occurrence of large Bathysiphon species in regions of high food supply. Ten camera sled transects across the eastern U.S. continental slope between 32-degrees-N and 41-degrees-N emphasize the abundance of B. filiformis in the Cape Hatteras area compared with its rarity or absence elsewhere along the continental slope. Box cores, bottom photographs, and direct submersible observations indicate that B. filiformis tubes project above the sediment in an arcuate curve with only the lower 1 cm or so buried. Bathysiphon major adopts a similar orientation but has a greater proportion (50-80%) of the tube buried. The voluminous, dense, granular protoplasm of both species contains biogenic particles (including diatoms, in B. filiformis only), dinoflagellate cysts, fungal remains, pollen grains, tintinnid loricae, polychaete jaws and setae, benthic foraminiferal tests, and fish tooth fragments), suggesting that they feed mainly on material derived from the sediment surface. Submersible observations indicate that B. filiformis is patchily distributed at 100 m scales. Smaller scale dispersion patterns (analyzed from photographs) are generally random but with a tendency to be aggregated at lower densities and uniform at higher densities. A variety of metazoans and foraminifers live epifaunally on the outer surfaces of B. filiformis tubes. The most frequently occurring metazoans were larvae and juveniles of an unidentified gastropod and a tubiculous terebellid polychaete Nicolea sp. The most common epifaunal foraminifers were Tritaxis conica and Trochammina sp. Tubes of B. major, however, are virtually devoid of epifauna. Our results support the view that large, agglutinated rhizopod tests may influence the structure of deep-water benthic communities. However, in the case of Bathysiphon on the North Carolina continental slope, the effect appears limited to taxa directly associated with the foraminiferal tubes.

Levin, LA, Childers SE, Smith CR.  1991.  Epibenthic, agglutinating foraminiferans in the Santa Catalina Basin and their response to disturbance. Deep-Sea Research Part a-Oceanographic Research Papers. 38:465-483.   10.1016/0198-0149(91)90047-j   AbstractWebsite

There are five common species of large (0.5-6 cm long) epibenthic, agglutinating foraminiferans in the Santa Catalina Basin (1200-1350 m). This paper describes their basic ecology and response to mound disturbance. Combined, the five species attain mean densities of 200-300 individuals per m2 and their protoplasm has an average biomass of 199.5 mg m-2. Individual species occur at densities ranging from 7 to 100 m-2, and each species has a different population size structure. Protoplasm comprises < 2% of test volumes. Analysis of excess Th-234 revealed no indication of particle sequestering within tests, and acridine orange direct counts of bacteria provided no evidence of microbial gardening or enhancement associated with tests. Twenty-five per cent of tests examined had metazoan associates; approximately half of these were polychaetes. Experiments were carried out to investigate the response of the epibenthic foraminiferal assemblage to disturbance from large, biogenic mounds, a common feature on the Santa Catalina Basin floor. Three branched forms, Pelosina cf. arborescens, P. cf. cylindrica and a mud-walled astrorhizinid, were most abundant on background sediments, less common on natural mounds and absent from artificially-created mounds exposed for 10.5 months. Two spherical species, Oryctoderma sp. and a different mud-walled astrorhizinid, were present at similar densities on artificial mounds (9.5-10.5 months old), natural mounds and undisturbed sediments, but Oryctoderma sp. attained largest sizes on mounds. These two species appear to be opportunistic taxa that can colonize and grow rapidly on mound sediments. This study suggests that disturbance, in this case that by sediment mound builders, is an important source of spatial heterogeneity in deep-water foraminiferal communities. Where sediment mounds occur, foraminiferal assemblages will experience disequilibrium dynamics.