Publications

Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
2012
Hunter, WR, Levin LA, Kitazato H, Witte U.  2012.  Macrobenthic assemblage structure and organismal stoichiometry control faunal processing of particulate organic carbon and nitrogen in oxygen minimum zone sediments. Biogeosciences. 9:993-1006.   10.5194/bg-9-993-2012   AbstractWebsite

The Arabian Sea oxygen minimum zone (OMZ) impinges on the western Indian continental margin between 150 and 1500 m, causing gradients in oxygen availability and sediment geochemistry at the sea floor. Oxygen availability and sediment geochemistry are important factors structuring macrofaunal assemblages in marine sediments. However, relationships between macrofaunal assemblage structure and sea-floor carbon and nitrogen cycling are poorly understood. We conducted in situ C-13:N-15 tracer experiments in the OMZ core (540 m [O-2] = 0.35 mu mol l(-1)) and lower OMZ boundary (800-1100 m, [O-2] = 2.2-15.0 mu mol l(-1)) to investigate how macrofaunal assemblage structure, affected by different oxygen levels, and C:N coupling influence the fate of particulate organic matter. No macrofauna were present in the OMZ core. Within the OMZ boundary, relatively high abundance and biomass resulted in the highest macrofaunal assimilation of particulate organic carbon (POC) and nitrogen (PON) at the lower oxygen 800 m stations ([O-2] = 2.2-2.36 mu mol l(-1)). At these stations the numerically dominant cirratulid polychaetes exhibited greatest POC and PON uptake. By contrast, at the higher oxygen 1100 m station ([O-2] = 15.0 mu mol l(-1)) macrofaunal C and N assimilation was lower, with POC assimilation dominated by one large solitary ascidian. Macrofaunal POC and PON assimilation were influenced by changes in oxygen availability, and significantly correlated to differences in macrofaunal assemblage structure between stations. However, macrofaunal feeding responses were ultimately characterised by preferential organic nitrogen assimilation, relative to their internal C:N budgets.

2008
Andersson, JH, Woulds C, Schwartz M, Cowie GL, Levin LA, Soetaert K, Middelburg JJ.  2008.  Short-term fate of phytodetritus in sediments across the Arabian Sea oxygen minimum zone. Biogeosciences. 5:43-53. AbstractWebsite

The short-term fate of phytodetritus was investigated across the Pakistan margin of the Arabian Sea at water depths ranging from 140 to 1850 m, encompassing the oxygen minimum zone (similar to 100-1100 m). Phytodetritus sedimentation events were simulated by adding similar to 44 mmol (13)C-labelled algal material per m(2) to surface sediments in retrieved cores. Cores were incubated in the dark, at in situ temperature and oxygen concentrations. Overlying waters were sampled periodically, and cores were recovered and sampled (for organisms and sediments) after durations of two and five days. The labelled carbon was subsequently traced into bacterial lipids, foraminiferan and macrofaunal biomass, and dissolved organic and inorganic pools. The majority of the label (20 to 100%) was in most cases left unprocessed in the sediment at the surface. The largest pool of processed carbon was found to be respiration (0 to 25% of added carbon), recovered as dissolved inorganic carbon. Both temperature and oxygen were found to influence the rate of respiration. Macrofaunal influence was most pronounced at the lower part of the oxygen minimum zone where it contributed 11% to the processing of phytodetritus.

2007
Woulds, C, Cowie GL, Levin LA, Andersson JH, Middelburg JJ, Vandewiele S, Lamont PA, Larkin KE, Gooday AJ, Schumacher S, Whitcraft C, Jeffreys RM, Schwartz M.  2007.  Oxygen as a control on seafloor biological communities and their roles in sedimentary carbon cycling. Limnology and Oceanography. 52:1698-1709.   10.4319/lo.2007.52.4.1698   AbstractWebsite

C-13 tracer experiments were conducted at sites spanning the steep oxygen, organic matter, and biological community gradients across the Arabian Sea oxygen minimum zone, in order to quantify the role that benthic fauna play in the short-term processing of organic matter (OM) and to determine how this varies among different environments. Metazoan macrofauna and macrofauna-sized foraminiferans took up as much as 56 +/- 13 mg of added C m(-2) (685 mg C m(-2) added) over 2-5 d, and at some sites this uptake was similar in magnitude to bacterial uptake and/or total respiration. Bottom-water dissolved oxygen concentrations exerted a strong control over metazoan macrofaunal OM processing. At oxygen concentrations > 7 mu mol L-1 (0.16 ml L-1), metazoan macrofauna were able to take advantage of abundant OM and to dominate OM uptake, while OM processing at O-2 concentrations of 5.0 mu mol L-1 (0.11 ml L-1) was dominated instead by (macrofaunal) foraminiferans. This led us to propose the hypothesis that oxygen controls the relative dominance of metazoan macrofauna and foraminifera in a threshold manner, with the threshold lying between 5 and 7 mu mol L-1 (0.11 to 0.16 ml L-1). Large metazoan macrofaunal biomass and high natural concentrations of OM were also associated with rapid processing of fresh OM by the benthic community. Where they were present, the polychaete Linopherus sp. and the calcareous foraminiferan Uvigerina ex gr. semiornata, dominated the uptake of OM above and below, respectively, the proposed threshold concentrations of bottom-water oxygen.