Export 14 results:
Sort by: Author Title Type [ Year  (Desc)]
Raman, AV, Damodaran R, Levin LA, Ganesh T, Rao YKV, Nanduri S, Madhusoodhanan R.  2015.  Macrobenthos relative to the oxygen minimum zone on the East Indian margin, Bay of Bengal. Marine Ecology-an Evolutionary Perspective. 36:679-700.   10.1111/maec.12176   AbstractWebsite

The Bay of Bengal remains one of the least studied of the world's oxygen minimum zones (OMZs). Here we offer a detailed investigation of the macrobenthos relative to oxygen minimum zone [OMZ - DO (dissolved oxygen), concentration <0.5ml1(-1)] at 110 stations off the North East Indian margin (16(0) and 20(0)N) featuring coastal, shelf and slope settings (10-1004m). Macrobenthos (>0.5mm) composition, abundance and diversity were studied in relation to variations in depth, dissolved oxygen, sediment texture and organic carbon. Using multivariate procedures powered by SIMPROF analysis we identified distinct OMZ core sites (depth 150-280m; DO 0.37ml1(-1)) that exhibited dense populations of surface-feeding polychaetes (mean 2188 ind. m(-2)) represented by spionids and cossurids (96%). Molluscs and crustaceans were poorly represented except for ampeliscid amphipods. The lower OMZ sites (DO>0.55mll(-1)) supported a different assemblage of polychaetes (cirratulids, amphinomids, eunicids, orbinids, paraonids), crustaceans and molluscs, albeit with low population densities (mean 343 ind. m(-2)). Species richness [E(S-100)], diversity (Margalef d; H') and evenness (J') were lower and dominance was higher within the OMZ core region. Multiple regression analysis showed that a combination of sand, clay, organic carbon, and dissolved oxygen explained 62-78% of the observed variance in macrobenthos species richness and diversity: E(S-100) and H'. For polychaetes, clay and oxygen proved important. At low oxygen sites (DO <1mll(-1)), depth accounted for most variance. Residual analysis (after removing depth effects) revealed that dissolved oxygen and sediment organic matter influenced 50-62% of residual variation in E(S-100), H' and d for total macrofauna. Of this, oxygen alone influenced up to similar to 50-62%. When only polychaetes were evaluated, oxygen and organic matter explained up to 58-63%. For low oxygen sites, organic matter alone had the explanatory power when dominance among polychaetes was considered. Overall, macrobenthic patterns in the Bay of Bengal were consistent with those reported for other upwelling margins. However, the compression of faunal gradients at shallower depths was most similar to the Chile/Peru margin, and different from the Arabian Sea, where the depth range of the OMZ is two times greater. The Bay of Bengal patterns may take on added significance as OMZs shoal globally.

Maloney, JM, Grupe BM, Pasulka AL, Dawson KS, Case DH, Frieder CA, Levin LA, Driscoll NW.  2015.  Transpressional segment boundaries in strike-slip fault systems offshore southern California: Implications for fluid expulsion and cold seep habitats. Geophysical Research Letters. 42:4080-4088.   10.1002/2015gl063778   AbstractWebsite

The importance of tectonics and fluid flow in controlling cold seep habitats has long been appreciated at convergent margins but remains poorly understood in strike-slip systems. Here we present geophysical, geochemical, and biological data from an active methane seep offshore from Del Mar, California, in the inner California borderlands (ICB). The location of this seep appears controlled by localized transpression associated with a step in the San Diego Trough fault zone and provides an opportunity to examine the interplay between fluid expulsion and restraining step overs along strike-slip fault systems. These segment boundaries may have important controls on seep locations in the ICB and other margins characterized by strike-slip faulting (e.g., Greece, Sea of Marmara, and Caribbean). The strike-slip fault systems offshore southern California appear to have a limited distribution of seep sites compared to a wider distribution at convergent plate boundaries, which may influence seep habitat diversity and connectivity.

Marlow, JJ, Steele JA, Ziebis W, Thurber AR, Levin LA, Orphan VJ.  2014.  Carbonate-hosted methanotrophy represents an unrecognized methane sink in the deep sea. Nature Communications. 5   10.1038/ncomms6094   AbstractWebsite

The atmospheric flux of methane from the oceans is largely mitigated through microbially mediated sulphate-coupled methane oxidation, resulting in the precipitation of authigenic carbonates. Deep-sea carbonates are common around active and palaeo-methane seepage, and have primarily been viewed as passive recorders of methane oxidation; their role as active and unique microbial habitats capable of continued methane consumption has not been examined. Here we show that seep-associated carbonates harbour active microbial communities, serving as dynamic methane sinks. Microbial aggregate abundance within the carbonate interior exceeds that of seep sediments, and molecular diversity surveys reveal methanotrophic communities within protolithic nodules and well-lithified carbonate pavements. Aggregations of microbial cells within the carbonate matrix actively oxidize methane as indicated by stable isotope FISH-nanoSIMS experiments and (CH4)-C-14 radiotracer rate measurements. Carbonate-hosted methanotrophy extends the known ecological niche of these important methane consumers and represents a previously unrecognized methane sink that warrants consideration in global methane budgets.

Zapata-Hernandez, G, Sellanes J, Thurber AR, Levin LA.  2014.  Trophic structure of the bathyal benthos at an area with evidence of methane seep activity off southern Chile (similar to 45 degrees S). Journal of the Marine Biological Association of the United Kingdom. 94:659-669.   10.1017/s0025315413001914   AbstractWebsite

Through application of carbon (C) and nitrogen (N) stable isotope analyses, we investigated the benthic trophic structure of the upper-slope off southern Chile (similar to 45 degrees S) including a recent methane seep area discovered as part of this study. The observed fauna comprised 53 invertebrates and seven fish taxa, including remains of chemosymbiotic fauna (e.g. chemosymbiotic bivalves and siboglinid polychaetes), which are typical of methane seep environments. While in close-proximity to a seep, the heterotrophic fauna had a nutrition derived predominantly from photosynthetic sources (delta C-13 > -21 parts per thousand). The absence of chemosynthesis-based nutrition in the consumers was likely a result of using an Agassiz trawl to sample the benthos, a method that is likely to collect a mix of fauna including individuals from adjacent non-seep bathyal environments. While four trophic levels were estimated for invertebrates, the fish assemblage was positioned within the third trophic level of the food web. Differences in corrected standard ellipse area (SEA(C)), which is a proxy of the isotopic niche width, yielded differences for the demersal fish Notophycis marginata (SEA(C) = 5.1 parts per thousand) and Coelorinchus fasciatus (SEA(C) = 1.1 parts per thousand), suggesting distinct trophic behaviours. No ontogenic changes were detected in C. fasciatus regarding food sources and trophic position. The present study contributes the first basic trophic data for the bathyal area off southern Chile, including the identification of a new methane seep area, among the furthest south ever discovered. Such information provides the basis for the proper sustainable management of the benthic environments present along the vast Chilean continental margin.

Zapata-Hernandez, G, Sellanes J, Thurber AR, Levin LA, Chazalon F, Linke P.  2014.  New insights on the trophic ecology of bathyal communities from the methane seep area off Concepcion, Chile (similar to 36 degrees S). Marine Ecology-an Evolutionary Perspective. 35:1-21.   10.1111/maec.12051   AbstractWebsite

Studies of the trophic structure in methane-seep habitats provide insight into the ecological function of deep-sea ecosystems. Methane seep biota on the Chilean margin likely represent a novel biogeographic province; however, little is known about the ecology of the seep fauna and particularly their trophic support. The present study, using natural abundance stable isotopes, reveals a complex trophic structure among heterotrophic consumers, with four trophic levels supported by a diversity of food sources at a methane seep area off Concepcion, Chile (similar to 36 degrees S). Although methanotrophy, thiotrophy and phototrophy are all identified as carbon fixation mechanisms fueling the food web within this area, most of the analysed species (87.5%) incorporate carbon derived from photosynthesis and a smaller number (12%) use carbon derived from chemosynthesis. Methane-derived carbon (MDC) incorporation was documented in 22 taxa, including sipunculids, gastropods, polychaetes and echinoderms. In addition, wide trophic niches were detected in suspension-feeding and deposit-feeding taxa, possibly associated with the use of organic matter in different stages of degradation (e.g. from fresh to refractory). Estimates of Bayesian standard ellipses area (SEA(B)) reveal different isotopic niche breadth in the predator fishes, the Patagonian toothfish Dissostichus eleginoides and the combtooth dogfish Centroscyllium nigrum, suggesting generalist versus specialist feeding behaviors, respectively. Top predators in the ecosystem were the Patagonian toothfish D. eleginoides and the dusky cat shark, Bythaelurus canescens. The blue hake Antimora rostrata also provides a trophic link between the benthic and pelagic systems, with a diet based primarily on pelagic-derived carrion. These findings can inform accurate ecosystem models, which are critical for effective management and conservation of methane seep and adjacent deep-sea habitats in the Southeastern Pacific.

Sperling, EA, Frieder CA, Raman AV, Girguis PR, Levin LA, Knoll AH.  2013.  Oxygen, ecology, and the Cambrian radiation of animals. Proceedings of the National Academy of Sciences of the United States of America. 110:13446-13451.   10.1073/pnas.1312778110   AbstractWebsite

The Proterozoic-Cambrian transition records the appearance of essentially all animal body plans (phyla), yet to date no single hypothesis adequately explains both the timing of the event and the evident increase in diversity and disparity. Ecological triggers focused on escalatory predator-prey "arms races" can explain the evolutionary pattern but not its timing, whereas environmental triggers, particularly ocean/atmosphere oxygenation, do the reverse. Using modern oxygen minimum zones as an analog for Proterozoic oceans, we explore the effect of low oxygen levels on the feeding ecology of polychaetes, the dominant macrofaunal animals in deep-sea sediments. Here we show that low oxygen is clearly linked to low proportions of carnivores in a community and low diversity of carnivorous taxa, whereas higher oxygen levels support more complex food webs. The recognition of a physiological control on carnivory therefore links environmental triggers and ecological drivers, providing an integrated explanation for both the pattern and timing of Cambrian animal radiation.

Gooday, AJ, Bett BJ, Escobar E, Ingole B, Levin LA, Neira C, Raman AV, Sellanes J.  2010.  Habitat heterogeneity and its influence on benthic biodiversity in oxygen minimum zones. Marine Ecology-an Evolutionary Perspective. 31:125-147.   10.1111/j.1439-0485.2009.00348.x   AbstractWebsite

Oxygen minimum zones (OMZs; midwater regions with O(2) concentrations <0.5 ml l(-1)) are mid-water features that intercept continental margins at bathyal depths (100-1000 m). They are particularly well developed in the Eastern Pacific Ocean, the Arabian Sea and the Bay of Bengal. Based on analyses of data from these regions, we consider (i) how benthic habitat heterogeneity is manifested within OMZs, (ii) which aspects of this heterogeneity exert the greatest influence on alpha and beta diversity within particular OMZs and (iii) how heterogeneity associated with OMZs influences regional (gamma) diversity on continental margins. Sources of sea-floor habitat heterogeneity within OMZs include bottom-water oxygen and sulphide gradients, substratum characteristics, bacterial mats, and variations in the organic matter content of the sediment and pH. On some margins, hard grounds, formed of phosphorites, carbonates or biotic substrata, represent distinct subhabitats colonized by encrusting faunas. Most of the heterogeneity associated with OMZs, however, is created by strong sea-floor oxygen gradients, reinforced by changes in sediment characteristics and organic matter content. For the Pakistan margin, combining these parameters revealed clear environmental and faunal differences between the OMZ core and the upper and lower boundary regions. In all Pacific and Arabian Sea OMZs examined, oxygen appears to be the master driver of alpha and beta diversity in all benthic faunal groups for which data exist, as well as macrofaunal assemblage composition, particularly in the OMZ core. However, other factors, notably organic matter quantity and quality and sediment characteristics, come into play as oxygen concentrations begin to rise. The influence of OMZs on meiofaunal, macrofaunal and megafaunal regional (gamma) diversity is difficult to assess. Hypoxia is associated with a reduction in species richness in all benthic faunal groups, but there is also evidence for endemism in OMZ settings. We conclude that, on balance, OMZs probably enhance regional diversity, particularly in taxa such as Foraminifera, which are more tolerant of hypoxia than others. Over evolutionary timescales, they may promote speciation by creating strong gradients in selective pressures and barriers to gene flow.

Basak, C, Rathburn AE, Perez ME, Martin JB, Kluesner JW, Levin LA, De Deckker P, Gieskes JM, Abriani M.  2009.  Carbon and oxygen isotope geochemistry of live (stained) benthic foraminifera from the Aleutian Margin and the Southern Australian Margin. Marine Micropaleontology. 70:89-101.   10.1016/j.marmicro.2008.11.002   AbstractWebsite

Comparisons of ambient bottom-water geochemistry and stable isotopic values of the tests of living (stained) calcareous benthic foraminifera from the North Pacific (on the Aleutian Margin, water depth 1988 m) and Murray Canyons group in the Southern Indian Ocean (Australian Margin, water depths 2476 m and 1634 m) provide modem environmental analogs to calibrate paleoenvironmental assessments. Consistent with the hypothesis that microhabitat preferences influence foraminiferal isotopic values, benthic foraminifera from both margins were depleted in (13)C with respect to bottom-water dissolved inorganic carbon (DIC). The carbon isotope values of deep infaunal foraminifera (Chilostomella oolina, Globobulimina pacifica) showed greater differences from estimates of those of DIC than shallow benthic foraminifera (Bulimina mexicana, Bolivinita quadrilatera, Pullenia bulloides). This study provides new isotopic and ecological information for B. quadrilatera. The mean Delta delta(13)C value, defined as foraminiferal delta(13)C values minus estimated ambient delta(13)C values from the Aleutian Margin, is 0.97 parts per thousand higher for G. pacifica than the mean from the Murray Canyon. This difference may result either from genetic or biological differences between the populations or from differences in environmental isotopic influences (such as pore water differences) that were not accounted for in the equilibrium calculations. These analyses provide calibration information for the evaluation of bottom water conditions and circulation patterns of ancient oceans based on fossil foraminiferal geochemistry. (C) 2008 Elsevier B.V. All rights reserved.

Hughes, DJ, Lamont PA, Levin LA, Packer M, Feeley K, Gage JD.  2009.  Macrofaunal communities and sediment structure across the Pakistan margin Oxygen Minimum Zone, North-East Arabian Sea. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 56:434-448.   10.1016/j.dsr2.2008.05.030   AbstractWebsite

Benthic macrofauna and sediment column features were sampled at five stations along a bathymetric transect (depths 140, 300, 940, 1200, 1850 m) through the Pakistan margin Oxygen Minimum Zone (OMZ) during the 2003 intermonsoon (March-May) and late-post-monsoon (August-October) periods. Objectives were to compare patterns with those described from other OMZs, particularly the Oman margin of the Arabian Sea, in order to assess the relative influence of bottom-water oxygenation and sediment organic content on macrofaunal standing stock and community structure. Macrofaunal density was highest at the 140-m station subject to monsoon-driven shoaling of the OMZ, but there was no elevation of density at the lower OMZ boundary (1200 m). Numbers was extremely low in the OMZ core (300 m) and were not readily explicable from the environmental data. There was no consistent depth-related trend in macrofaunal biomass. Macrofaunal densities were consistently lower than found off Oman but there was less contrast in biomass. A significant post-monsoon decline in macrofaunal density at 140 m was driven by selective loss of polychaete taxa. Polychaeta was the most abundant major taxon at all stations but did not dominate the macrofaunal community to the extent reported from Oman. Cirratulidae and Spionidae were major components of the polychaete fauna at most stations but Acrocirridae, Ampharetidae, Amphinomidae and Cossuridae were more important at 940 m. Polychaete assemblages at each station were almost completely distinct at the species level. Polychaete species richness was positively correlated with bottom-water dissolved oxygen and negatively correlated with sediment TOC, C:N ratio and total phytopigments. Community dominance showed the opposite pattern. The strongly inverse correlation between oxygen and measures of sediment organic content made it difficult to distinguish their relative effects. The strongly laminated sediments in the OMZ core contrasted with the homogeneous, heavily bioturbated sediments above and below this zone but were associated with minimal macrofaunal biomass rather than distinctive functional group composition. In general, data from the Oman margin were weak predictors of patterns seen off Pakistan, and results suggest the importance of local factors superimposed on the broader trends of macrofaunal community composition in OMZs. (C) 2008 Elsevier Ltd. All rights reserved.

Middelburg, JJ, Levin LA.  2009.  Coastal hypoxia and sediment biogeochemistry. Biogeosciences. 6:1273-1293. AbstractWebsite

The intensity, duration and frequency of coastal hypoxia (oxygen concentration < 63 mu M) are increasing due to human alteration of coastal ecosystems and changes in oceanographic conditions due to global warming. Here we provide a concise review of the consequences of coastal hypoxia for sediment biogeochemistry. Changes in bottom-water oxygen levels have consequences for early diagenetic pathways (more anaerobic at expense of aerobic pathways), the efficiency of re-oxidation of reduced metabolites and the nature, direction and magnitude of sediment-water exchange fluxes. Hypoxia may also lead to more organic matter accumulation and burial and the organic matter eventually buried is also of higher quality, i.e. less degraded. Bottom-water oxygen levels also affect the organisms involved in organic matter processing with the contribution of metazoans decreasing as oxygen levels drop. Hypoxia has a significant effect on benthic animals with the consequences that ecosystem functions related to macrofauna such as bio-irrigation and bioturbation are significantly affected by hypoxia as well. Since many microbes and microbial-mediated biogeochemical processes depend on animal-induced transport processes (e.g. re-oxidation of particulate reduced sulphur and denitrification), there are indirect hypoxia effects on biogeochemistry via the benthos. Severe long-lasting hypoxia and anoxia may result in the accumulation of reduced compounds in sediments and elimination of macrobenthic communities with the consequences that biogeochemical properties during trajectories of decreasing and increasing oxygen may be different (hysteresis) with consequences for coastal ecosystem dynamics.

Levin, L, Gutierrez D, Rathburn A, Neira C, Sellanes J, Munoz P, Gallardo V, Salamanca M.  2002.  Benthic processes on the Peru margin: a transect across the oxygen minimum zone during the 1997-98 El Nino. Progress in Oceanography. 53:1-27.   10.1016/s0079-6611(02)00022-8   AbstractWebsite

Oxygen minimum zones (OMZs) are widespread features in the most productive regions of the world ocean. A holistic view of benthic responses to OMZ conditions will improve our ability to predict ecosystem-level consequences of climatic trends that influence oxygen availability, such as global warming or ENSO-related events. Four stations off Callao, Peru (-12'S, Station A, 305 m; Station B, 562 m; Station C, 830 nu and Station D, 1210 m) were sampled to examine the influence of the low bottom-water oxygen concentration and high organic-matter availability within the OMZ (O(2) < 0.5 ml L(-1)) on sediments, benthic communities, and bioturbation. Sampling took place during early January 1998, an intense El Ni (n) over tildeo period associated with higher-than-normal levels of O(2) on the shelf and upper slope. Peru slope sediments were highly heterogeneous. Sediment total organic carbon content exceeded 16%, lamination was present below 6 cm depth, and filamentous sulfur bacteria (Thioploca spp.) were present at Station A, (305 m, 0, < 0.02 ml L(-1)). Deeper sites contained phosphorite crusts or pellets and exhibited greater bottom-water oxygenation and lower content and quality of organic matter. X-radiographs and (210)Pb and (234)Th profiles suggested the dominance of lateral transport and bioturbation over pelagic sedimentation at the mid- and lower slope sites. Macrofauna, metazoan meiofauna and foraminifera exhibited coherence of density patterns across stations, with maximal densities (and for macrofauna, reduced diversity) at Station A, where bottom-water oxygen concentration was lowest and sediment labile organic matter content (LOC: sum of protein, carbohydrate and lipid carbon) was greatest. Metazoan and protozoan meiofaunal densities were positively correlated with sediment LOC. The taxa most tolerant of nearly anoxic, organic-rich conditions within the Peru OMZ were calcareous foraminifera, nematodes and gutless phallodrilinid (symbiont-bearing) oligochaetes. Agglutinated foraminifera, harpacticoid copepods, polychaetes and many other macrofaunal taxa increased in relative abundance below the OMZ. During the study (midpoint of the 1997-98 El Ni (n) over tildeo), the upper OMZ boundary exhibited a significant deepening (to 190 m) relative to 'normal', non-El Ni (n) over tildeo conditions (< 100 m), possibly causing a mild, transient oxygenation over the upper slope (200-300 m) and reduction of the organic particle flux to the seabed. Future sampling may determine whether the Peru margin system exhibits dynamic responses to changing ENSO-related conditions. (C) 2002 Elsevier Science Ltd. All rights reserved.

Neira, C, Sellanes J, Levin LA, Arntz WE.  2001.  Meiofaunal distributions on the Peru margin: relationship to oxygen and organic matter availability. Deep-Sea Research Part I-Oceanographic Research Papers. 48:2453-2472.   10.1016/s0967-0637(01)00018-8   AbstractWebsite

A quantitative study of metazoan meiofauna was carried out on bathyal sediments (305, 562, 830 and 1210 m) along a transect within and beneath the oxygen minimum zone (OMZ) in the southeastern Pacific off Callao, Peru (12 degreesS). Meiobenthos densities ranged from 1517 (upper slope, middle of OMZ) to 440-548 ind. 10cm(-2) (lower slope stations, beneath the OMZ). Nematodes were the numerically dominant meiofaunal taxon at every station, followed by copepods and nauplii. Increasing bottom-water oxygen concentration and decreasing organic matter availability downslope were correlated with observed changes in meiofaunal abundance. The 300-m site, located in the middle of the OMZ, differed significantly in meiofaunal abundance, dominance, and in vertical distribution pattern from the deeper sites. At 305 m, nematodes amounted to over 99% of total meiofauna; about 70% of nematodes were found in the 2-5 cm. interval. At the deeper sites, about 50% were restricted to the top I cm. The importance of copepods and nauplii increased consistently with depth, reaching similar to 12% of the total meiofauna at the deepest site. The observation of high nematode abundances at oxygen concentrations <0.02mll(-1) supports the hypothesis that densities are enhanced by an indirect positive effect of low oxygen involving (a) reduction of predators and competitors and (b) preservation of organic matter leading to high food availability and quality. Food input and quality, represented here by chloroplastic pigment equivalents (CPE) and sedimentary labile organic compounds (protein, carbohydrates and lipids), were strongly, positively correlated with nematode abundance. By way of contrast, oxygen exhibited a strong negative correlation, overriding food availability, with abundance of other meiofauna such as copepods and nauplii. These taxa were absent at the 300-m site. The high correlation of labile organic matter (C-LOM, sum of carbon contents in lipids, proteins and carbohydrates) with CPE (Pearson's r = 0.99, p <0.01) suggests that most of the sedimentary organic material sampled was of phytodetrital origin. The fraction of sediment organic carbon potentially available to benthic. heterotrophs, measured as C-LOM/Total organic carbon, was on average 17% at all stations. Thus, a residual, refractory fraction, constitutes the major portion of organic matter at the studied bathyal sites. (C) 2001 Elsevier Science Ltd. All rights reserved.

Rathburn, AE, Levin LA, Held Z, Lohmann KC.  2000.  Benthic foraminifera associated with cold methane seeps on the northern California margin: Ecology and stable isotopic composition. Marine Micropaleontology. 38:247-266.   10.1016/s0377-8398(00)00005-0   AbstractWebsite

Release of methane from large marine reservoirs has been linked to climate change, as a causal mechanism and a consequence of temperature changes, during the Quaternary and the Paleocene. These inferred linkages are based primarily on variations in benthic foraminiferal stable isotope signatures. Few modem analog data exist, however, to assess the influence of methane flux on the geochemistry or faunal characteristics of benthic foraminiferal assemblages. Here we present analyses of the ecology and stable isotopic compositions of living (Rose Bengal stained) and dead (fossil) foraminifera (>150 mu m) from cold methane seeps on the slope off of the Eel River, northern California (500-525 m), and discuss potential applications for reconstructions of methane release in the past and present. Calcareous foraminiferal assemblages associated with Calyptogena clam bed seeps were comprised of species that are also found in organic-rich environments. Cosmopolitan, paleoceanographically important taxa were abundant; these included Uvigerina, Bolivina, Chilostomella, Globobulimina, and Nonionella. We speculate that seep foraminifera are attracted to the availability of food at cold seeps, and require no adaptations beyond those needed for life in organic-rich, reducing environments. Oxygen isotopic values of the tests of living foraminiferal assemblages from seeps had a high range (up to 0.69 parts per thousand) as did carbon isotopic values (up to 1.02 parts per thousand). Many living foraminiferal isotope values were within the range exhibited by the same or similar species in non-seep environments. Carbon isotopic values of fossil foraminifera found deeper in the sediments (18-20 cm), however, were 4.10 parts per thousand (U. peregrina) and 3.60 parts per thousand (B. subargentea) more negative than living delta(13)C values. These results suggest that delta(13)C values of foraminiferal tests reflect methane seepage and species-specific differences in isotopic composition, and can indicate temporal variations in seep activity. A better understanding of foraminiferal ecology and stable isotopic composition will enhance paleo-seep recognition, and improve interpretations of climatic and paleoceanographic change. (C) 2000 Elsevier Science B.V. All rights reserved.

Gooday, AJ, Bernhard JM, Levin LA, Suhr SB.  2000.  Foraminifera in the Arabian Sea oxygen minimum zone and other oxygen-deficient settings: taxonomic composition, diversity, and relation to metazoan faunas. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 47:25-54.   10.1016/s0967-0645(99)00099-5   AbstractWebsite

Previous work has shown that some foraminiferal species thrive in organically enriched, oxygen-depleted environments. Here, we compare 'live' (stained) faunas in multicorer samples (0-1 cm layer) obtained at two sites on the Oman margin, one located at 412m within the oxygen minimum zone (OMZ) (O(2) = 0.13 ml l(-1)), the other located at 3350 m, well below the main OMZ (O(2) similar to 3.00 ml l(-1)). While earlier studies have focused on the hard-shelled (predominantly calcareous) foraminifera, we consider complete stained assemblages, including poorly known, soft-shelled, monothalamous forms. Densities at the 412-m site were much higher (16,107 individuals.10 cm(-2) in the > 63-mu m fraction) than at the 3350-m site (625 indiv.10 cm(-2)). Species richness (E(S(100))), diversity (H', Fishers Alpha index) and evenness (J') were much lower, and dominance (R1D) was higher, at 412 m compared with 3350 m. At 412 m, small calcareous foraminifera predominated and soft-shelled allogromiids and sacamminids were a minor faunal element. At 3350 m, calcareous individuals were much less common and allogromiids and saccamminids formed a substantial component of the fauna. There were also strong contrasts between the foraminiferal macrofauna( > 300-mu m fraction) at these two sites; relatively small species of Bathysiphon, Globobulimina and Lagenammina dominated at 412 m, very large, tubular, agglutinated species of Bathysiphon, Hyperammina, Rhabdammina and Saccorhiza were important at 3350 m. Our observations suggest that, because they contain fewer soft-shelled and agglutinated foraminifera, a smaller proportion of bathyal, low-oxygen faunas is lost during fossilization compared to faunas from well-oxygenated environments. Trends among foraminifera (> 63 mu m fraction) in the Santa Barbara Basin (590 and 610m depth; O(2) = 0.05 and 0.15 ml(-1) respectively), and macrofaunal foraminifera(> 300 mu m) on the Peru margin (300-1250 m depth: O(2) = 0.02-1.60 mi l(-1)), matched those observed on the Oman margin. Tn particular, soft-shelled monothalamous taxa were rare and large agglutinated taxa were absent in the most oxygen-depleted ( < 0.20 mi l(-1)) stations. Foraminifera often outnumber metazoans (both meiofaunal and macrofaunal) in bathyal oxygen-depleted settings. However, although phylogenetically distant, foraminifera and metazoans exhibit similar population responses to oxygen depletion; species diversity decreases, dominance increases, and the relative abundance of the major taxa changes. The foraminiferal macrofauna ( > 300 mu m) were 5 times more abundant than the metazoan macrofauna at 412 m on the Oman margin but 16 times more abundant at the 3350 m site. Among the meiofauna (63-300 mu m), the trend was reversed, foraminifera were 17 times more abundant than metazoan taxa at 412 m but only 1.4 times more abundant at 3350 In. An abundance of food combined with oxygen levels which are not depressed sufficiently to eliminate the more tolerant taxa, probably explains why foraminifera and macrofaunal metazoans flourished at the 412-m site, perhaps to the detriment of the metazoan meiofauna. (C) 1999 Elsevier Science Ltd. All rights reserved.