Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
Larkin, KE, Gooday AJ, Woulds C, Jeffreys RM, Schwartz M, Cowie G, Whitcraft C, Levin L, Dick JR, Pond DW.  2014.  Uptake of algal carbon and the likely synthesis of an "essential" fatty acid by Uvigerina ex. gr. semiornata (Foraminifera) within the Pakistan margin oxygen minimum zone: evidence from fatty acid biomarker and C-13 tracer experiments. Biogeosciences. 11:3729-3738.   10.5194/bg-11-3729-2014   AbstractWebsite

Foraminifera are an important component of benthic communities in oxygen-depleted settings, where they potentially play a significant role in the processing of organic matter. We tracked the uptake of a C-13-labelled algal food source into individual fatty acids in the benthic foraminiferal species Uvigerina ex. gr. semiornata from the Arabian Sea oxygen minimum zone (OMZ). The tracer experiments were conducted on the Pakistan margin during the late/post monsoon period (August-October 2003). A monoculture of the diatom Thalassiosira weisflogii was C-13-labelled and used to simulate a pulse of phytoplankton in two complementary experiments. A lander system was used for in situ incubations at 140m water depth and for 2.5 days in duration. Shipboard laboratory incubations of cores collected at 140 m incorporated an oxystat system to maintain ambient dissolved oxygen concentrations and were terminated after 5 days. Uptake of diatoms was rapid, with a high incorporation of diatom fatty acids into foraminifera after similar to 2 days in both experiments. Ingestion of the diatom food source was indicated by the increase over time in the quantity of diatom biomarker fatty acids in the foraminifera and by the high percentage of C-13 in many of the fatty acids present at the endpoint of both in situ and laboratory-based experiments. These results indicate that U. ex. gr. semiornata rapidly ingested the diatom food source and that these foraminifera will play an important role in the short-term cycling of organic matter within this OMZ environment. The presence of 18:1(n-7) in the experimental foraminifera suggested that U. ex. gr. semiornata also consumed non-labelled bacterial food items. In addition, levels of 20:4(n-6), a PUFA only present in low amounts in the diatom food, increased dramatically in the foraminifera during both the in situ and shipboard experiments, possibly because it was synthesised de novo. This "essential fatty acid" is often abundant in benthic fauna, yet its origins and function have remained unclear. If U. ex. gr. semiornata is capable of de novo synthesis of 20:4(n-6), then it represents a potentially major source of this dietary nutrient in benthic food webs.

Levin, LA, McGregor AL, Mendoza GF, Woulds C, Cross P, Witte U, Gooday AJ, Cowie G, Kitazato H.  2013.  Macrofaunal colonization across the Indian margin oxygen minimum zone. Biogeosciences. 10:7161-7177.   10.5194/bg-10-7161-2013   AbstractWebsite

There is a growing need to understand the ability of bathyal assemblages to recover from disturbance and oxygen stress, as human activities and expanding oxygen minimum zones increasingly affect deep continental margins. The effects of a pronounced oxygen minimum zone (OMZ) on slope benthic community structure have been studied on every major upwelling margin; however, little is known about the dynamics or resilience of these benthic populations. To examine the influence of oxygen and phytodetritus on shortterm settlement patterns, we conducted colonization experiments at 3 depths on the West Indian continental margin. Four colonization trays were deployed at each depth for 4 days at 542 and 802 m (transect 1-16 degrees 58 ' N) and for 9 days at 817 and 1147 m (transect 2-17 degrees 31 ' N). Oxygen concentrations ranged from 0.9 mu M (0.02 mLL(-1)) at 542 m to 22 mu M (0.5 mLL(-1) ) at 1147 m. All trays contained local defaunated sediments; half of the trays at each depth also contained C-13/N-15-labeled phytodetritus mixed into the sediments. Sediment cores were collected between 535 m and 1140 m from 2 cross-margin transects for analysis of ambient (source) macrofaunal (> 300 mu m) densities and composition. Ambient macrofaunal densities ranged from 0 ind m(-2) (at 535-542 m) to 7400 ind m(-2), with maximum values on both transects at 700-800 m. Macrofaunal colonizer densities ranged from 0 ind m(-2) at 542 m, where oxygen was lowest, to average values of 142 ind m(-2) at 800 m, and 3074 ind m(-2) at 1147 m, where oxygen concentration was highest. These were equal to 4.3 and 151% of the ambient community at 800 m and 1147 m, respectively. Community structure of settlers showed no response to the presence of phytodetritus. Increasing depth and oxygen concentration, however, significantly influenced the community composition and abundance of colonizing macrofauna. Polychaetes constituted 92.4% of the total colonizers, followed by crustaceans (4.2%), mollusks (2.5%), and echinoderms (0.8%). The majority of colonizers were found at 1147 m; 88.5% of these were Capitella sp., although they were rare in the ambient community. Colonists at 800 and 1147 m also included ampharetid, spionid, syllid, lumbrinerid, cirratulid, cossurid and sabellid polychaetes. Consumption of C-13/N-15-labeled phytodetritus was observed for macrofaunal foraminifera (too large to be colonizers) at the 542 and 802/817 m sites, and by metazoan macrofauna mainly at the deepest, better oxygenated sites. Calcareous foraminifera (Uvigerina, Hoeglundina sp.), capitellid polychaetes and cumaceans were among the major phytodetritus consumers. These preliminary experiments suggest that bottom-water oxygen concentrations may strongly influence ecosystem services on continental margins, as reflected in rates of colonization by benthos and colonizer processing of carbon following disturbance. They may also provide a window into future patterns of settlement on the continental slope as the world's oxygen minimum zones expand.

Rathburn, AE, Levin LA, Held Z, Lohmann KC.  2000.  Benthic foraminifera associated with cold methane seeps on the northern California margin: Ecology and stable isotopic composition. Marine Micropaleontology. 38:247-266.   10.1016/s0377-8398(00)00005-0   AbstractWebsite

Release of methane from large marine reservoirs has been linked to climate change, as a causal mechanism and a consequence of temperature changes, during the Quaternary and the Paleocene. These inferred linkages are based primarily on variations in benthic foraminiferal stable isotope signatures. Few modem analog data exist, however, to assess the influence of methane flux on the geochemistry or faunal characteristics of benthic foraminiferal assemblages. Here we present analyses of the ecology and stable isotopic compositions of living (Rose Bengal stained) and dead (fossil) foraminifera (>150 mu m) from cold methane seeps on the slope off of the Eel River, northern California (500-525 m), and discuss potential applications for reconstructions of methane release in the past and present. Calcareous foraminiferal assemblages associated with Calyptogena clam bed seeps were comprised of species that are also found in organic-rich environments. Cosmopolitan, paleoceanographically important taxa were abundant; these included Uvigerina, Bolivina, Chilostomella, Globobulimina, and Nonionella. We speculate that seep foraminifera are attracted to the availability of food at cold seeps, and require no adaptations beyond those needed for life in organic-rich, reducing environments. Oxygen isotopic values of the tests of living foraminiferal assemblages from seeps had a high range (up to 0.69 parts per thousand) as did carbon isotopic values (up to 1.02 parts per thousand). Many living foraminiferal isotope values were within the range exhibited by the same or similar species in non-seep environments. Carbon isotopic values of fossil foraminifera found deeper in the sediments (18-20 cm), however, were 4.10 parts per thousand (U. peregrina) and 3.60 parts per thousand (B. subargentea) more negative than living delta(13)C values. These results suggest that delta(13)C values of foraminiferal tests reflect methane seepage and species-specific differences in isotopic composition, and can indicate temporal variations in seep activity. A better understanding of foraminiferal ecology and stable isotopic composition will enhance paleo-seep recognition, and improve interpretations of climatic and paleoceanographic change. (C) 2000 Elsevier Science B.V. All rights reserved.