Export 7 results:
Sort by: Author Title Type [ Year  (Desc)]
Thurber, AR, Levin LA, Rowden AA, Sommer S, Linke P, Kroger K.  2013.  Microbes, macrofauna, and methane: A novel seep community fueled by aerobic methanotrophy. Limnology and Oceanography. 58:1640-1656.   10.4319/lo.2013.58.5.1640   AbstractWebsite

During the discovery and description of seven New Zealand methane seep sites, an infaunal assemblage dominated by ampharetid polychaetes was found in association with high seabed methane emission. This ampharetid-bed assemblage had a mean density of 57,000 +/- 7800 macrofaunal individuals m(-2) and a maximum wet biomass of 274 g m(-2), both being among the greatest recorded from deep-sea methane seeps. We investigated these questions: Does the species assemblage present within these ampharetid beds form a distinct seep community on the New Zealand margin? and What type of chemoautotrophic microbes fuel this heterotrophic community? Unlike the other macro-infaunal assemblages, the ampharetid-bed assemblage composition was homogeneous, independent of location. Based on a mixing model of species-specific mass and isotopic composition, combined with published respiration measurements, we estimated that this community consumes 29-90 mmol C m(-2) d(-1) of methane-fueled biomass; this is > 290 times the carbon fixed by anaerobic methane oxidizers in these ampharetid beds. A fatty acid biomarker approach supported the finding that this community, unlike those previously known, consumes primarily aerobic methanotrophic bacteria. Due to the novel microbial fueling and high methane flux rates, New Zealand's ampharetid beds provide a model system to study the influence of metazoan grazing on microbially mediated biogeochemical cycles, including those that involve greenhouse gas emissions.

Bowden, DA, Rowden AA, Thurber AR, Baco AR, Levin LA, Smith CR.  2013.  Cold seep epifaunal communities on the Hikurangi Margin, New Zealand: Composition, succession, and vulnerability to human activities. Plos One. 8   10.1371/journal.pone.0076869   AbstractWebsite

Cold seep communities with distinctive chemoautotrophic fauna occur where hydrocarbon-rich fluids escape from the seabed. We describe community composition, population densities, spatial extent, and within-region variability of epifaunal communities at methane-rich cold seep sites on the Hikurangi Margin, New Zealand. Using data from towed camera transects, we match observations to information about the probable life-history characteristics of the principal fauna to develop a hypothetical succession sequence for the Hikurangi seep communities, from the onset of fluid flux to senescence. New Zealand seep communities exhibit taxa characteristic of seeps in other regions, including predominance of large siboglinid tubeworms, vesicomyid clams, and bathymodiolin mussels. Some aspects appear to be novel; however, particularly the association of dense populations of ampharetid polychaetes with high-sulphide, high-methane flux, soft-sediment microhabitats. The common occurrence of these ampharetids suggests they play a role in conditioning sulphide-rich sediments at the sediment-water interface, thus facilitating settlement of clam and tubeworm taxa which dominate space during later successional stages. The seep sites are subject to disturbance from bottom trawling at present and potentially from gas hydrate extraction in future. The likely life-history characteristics of the dominant megafauna suggest that while ampharetids, clams, and mussels exploit ephemeral resources through rapid growth and reproduction, lamellibrachid tubeworm populations may persist potentially for centuries. The potential consequences of gas hydrate extraction cannot be fully assessed until extraction methods and target localities are defined but any long-term modification of fluid flow to seep sites would have consequences for all chemoautotrophic fauna.

Thornhill, DJ, Struck TH, Ebbe B, Lee RW, Mendoza GF, Levin LA, Halanych KM.  2012.  Adaptive radiation in extremophilic Dorvilleidae (Annelida): diversification of a single colonizer or multiple independent lineages? Ecology and Evolution. 2:1958-1970.   10.1002/ece3.314   AbstractWebsite

Metazoan inhabitants of extreme environments typically evolved from forms found in less extreme habitats. Understanding the prevalence with which animals move into and ultimately thrive in extreme environments is critical to elucidating how complex life adapts to extreme conditions. Methane seep sediments along the Oregon and California margins have low oxygen and very high hydrogen sulfide levels, rendering them inhospitable to many life forms. Nonetheless, several closely related lineages of dorvilleid annelids, including members of Ophryotrocha, Parougia, and Exallopus, thrive at these sites in association with bacterial mats and vesicomyid clam beds. These organisms are ideal for examining adaptive radiations in extreme environments. Did dorvilleid annelids invade these extreme environments once and then diversify? Alternatively, did multiple independent lineages adapt to seep conditions? To address these questions, we examined the evolutionary history of methane-seep dorvilleids using 16S and Cyt b genes in an ecological context. Our results indicate that dorvilleids invaded these extreme habitats at least four times, implying preadaptation to life at seeps. Additionally, we recovered considerably more dorvilleid diversity than is currently recognized. A total of 3 major clades (designated "Ophryotrocha,""Mixed Genera" and "Parougia") and 12 terminal lineages or species were encountered. Two of these lineages represented a known species, Parougia oregonensis, whereas the remaining 10 lineages were newly discovered species. Certain lineages exhibited affinity to geography, habitat, sediment depth, and/or diet, suggesting that dorvilleids at methane seeps radiated via specialization and resource partitioning.

Cordes, EE, Cunha MR, Galeron J, Mora C, Olu-Le Roy K, Sibuet M, Van Gaever S, Vanreusel A, Levin LA.  2010.  The influence of geological, geochemical, and biogenic habitat heterogeneity on seep biodiversity. Marine Ecology-an Evolutionary Perspective. 31:51-65.   10.1111/j.1439-0485.2009.00334.x   AbstractWebsite

Cold seeps are among the most heterogeneous of all continental margin habitats. Abiotic Sources of heterogeneity in these systems include local variability in fluid flow, geochemistry, and substrate type, which give rise to different sets of microbial communities, microbial symbiont-bearing foundation species, and associated heterotrophic species. Biogenic habitats created by microbial mats and the symbiotic species including vesicomyid clams, bathymodiolin mussels, and siboglinid tubeworms add an additional layer of complexity to seep habitats. These forms of habitat heterogeneity result in a variety of macrofaunal and meiofaunal communities that respond to changes in structural complexity, habitat geochemistry, nutrient sources, and interspecific interactions in different ways and at different scales. These responses are predicted by a set of theoretical metacommunity models, the most appropriate of which for seep systems appears to be the 'species sorting' concept, an extension of niche theory. This concept is demonstrated through predictable patterns of community assembly, succession, and beta-level diversity. These processes are described using a newly developed analytical technique examining the change in the slope of the species accumulation curve with the number of habitats examined. The diversity response to heterogeneity has a consistent form, but quantitatively changes at different seep sites around the world as the types of habitats present and the size-classes of fauna analyzed change. The increase in beta diversity across seep habitat types demonstrates that cold seeps and associated biogenic habitats are significant sources of heterogeneity on continental margins globally.

Thurber, AR, Kroger K, Neira C, Wiklund H, Levin LA.  2010.  Stable isotope signatures and methane use by New Zealand cold seep benthos. Marine Geology. 272:260-269.   10.1016/j.margeo.2009.06.001   AbstractWebsite

The carbon isotopic composition of seep faunal tissue represents a time-integrated view of the interaction between biology and the biogeochemical gradients within the environment. Here we provide an initial description of carbon and nitrogen stable isotope signatures of dominant symbiont-bearing megafauna and heterotrophic mega- and macrofauna from 10 methane-seep sites on the continental margin of the North Island of New Zealand (662-1201 m water depth). Isotopic signatures suggest that sulfide oxidation supports symbiont-bearing taxa including solemyid and vesicomyid bivalves, and methanotrophic symbionts are present in the seep mussel Bathymodiolus sp Multiple species of Frenulata (Siboglinidae) are present and have a range of isotopic values that are indicative of both thiotroph- and methanotroph-based nutrition. Isotopic composition of the tubeworm Lamellibrachia sp. varied by 23 3 parts per thousand among individuals although there was no consistent difference among sites Variation in methane use by heterotrophic fauna appears to reflect the availability of hard vs. soft substrate, macrofauna on hard substrates had high delta(13)C signatures, reflecting consumption of photosynthetic-derived organic matter Two unique, biotic assemblages were discovered to be fueled largely by methane: a hard-substrate, multi-phyla sponge-associated community (inhabiting the sponge Pseudosuberites sp) and a soft-sediment assemblage dominated by ampharetid polychaetes Isotope signatures yield estimates of 38-100% and 6-100% methane-derived carbon in sponge associates and ampharetid-bed macrofauna. respectively. These estimates are comparable to those made for deeper methane seeps at the Florida Escarpment (3290 m) and Kodiak. Alaska seeps (4445 m) The overall high use of methane as a carbon source by both symbiont-bearing and heterotrophic fauna suggests that New Zealand methane seeps are an ideal model system to study the interaction among metazoans, bacteria, archaea, and their resulting effect on methane cycles. (C) 2009 Elsevier B V All rights reserved

Levin, LA, Mendoza GF.  2007.  Community structure and nutrition of deep methane-seep macrobenthos from the North Pacific (Aleutian) Margin and the Gulf of Mexico (Florida Escarpment). Marine Ecology-an Evolutionary Perspective. 28:131-151.   10.1111/j.1439-0485.2006.00131.x   AbstractWebsite

Methane seeps occur at depths extending to over 7000 m along the world's continental margins, but there is little information about the infaunal communities inhabiting sediments of seeps deeper than 3000 m. Biological sampling was carried out off Unimak Island (3200-3300 m) and Kodiak Island (4500 m) on the Aleutian margin, Pacific Ocean and along the Florida Escarpment (3300 m) in the Gulf of Mexico to investigate the community structure and nutrition of macrofauna at these sites. We addressed whether there are characteristic infaunal communities common to the deep-water seeps or to the specific habitats (clam beds, pogonophoran fields, and microbial mats) studied here, and ask how these differ from background communities or from shallow-seep settings sampled previously. We also investigated, using stable isotopic signatures, the utilization of chemosynthetically fixed and methane-derived organic matter by macrofauna from different regions and habitats. Within seep sites, macrofaunal densities were the greatest in the Florida microbial mats (20,961 +/- 11,618 ind(.)m(2)), the lowest in the Florida pogonophoran fields (926 +/- 132 ind(.)m(2)), and intermediate in the Unimak and Kodiak seep habitats. Seep macrofaunal densities differed from those in nearby non-seep sediments only in Florida mat habitats, where a single, abundant species of hesionid polychaete comprised 70% of the macrofauna. Annelids were the dominant taxon (> 60%) at all sites and habitats except in Florida background sediments (33%) and Unimak pogonophoran fields (27%). Macrofaunal diversity (H') was lower at the Florida than the Alaska seeps, with a trend toward reduced richness in clam bed relative to pogonophoran field or non-seep sediments. Community composition differences between seep and non-seep sediments were evident in each region except for the Unimak margin, but pogonophoran and clam bed macrofaunal communities did not differ from one another in Alaska. Seep VC and delta N-15 signatures were lighter for seep than non-seep macrofauna in all regions, indicating use of chemosynthetically derived carbon. The lightest delta C-13 values (average of species' means) were observed at the Florida escarpment (-42.87 parts per thousand). We estimated that on average animal tissues had up to 55% methane-derived carbon in Florida mats, 3144% in Florida clam beds and Kodiak clam beds and pogonophoran fields, and 9-23% in Unimak seep habitats. However, some taxa such as hesionid and capitellid polychaetes exhibited tremendous intraspecific 613C variation (> 307.0) between patch types. Overall we found few characteristic communities or features common to the three deep-water seeps (> 3000 m), but common properties across habitats (mat, clam bed, pogonophorans), independent of location or water depth. In general, macrofaunal densities were lower (except at Florida microbial mats), community structure was similar, and reliance on chemosynthesis was greater than observed in shallower seeps off California and Oregon.

Levin, LA.  2005.  Ecology of cold seep sediments: Interactions of fauna with flow, chemistry and microbes. Oceanography and Marine Biology - an Annual Review, Vol. 43. 43( Gibson RN, Atkinson RJA, Gordon JDM, Eds.).:1-46., Boca Raton: Crc Press-Taylor & Francis Group Abstract

Cold seeps occur in geologically active and passive continental margins, where pore waters enriched in methane are forced upward through the sediments by pressure gradients. The advective supply of methane leads to dense microbial communities with high metabolic rates. Anaerobic methane oxidation presumably coupled to sulphate reduction facilitates formation of carbonates and, in many places, generates extremely high concentrations of hydrogen sulphide in pore waters. Increased food supply, availability of hard substratum and high concentrations of methane and sulphide supplied to free-living and symbiotic bacteria provide the basis for the complex ecosystems found at these sites. This review examines the structures of animal communities in seep sediments and how they are shaped by hydrologic, geochemical and microbial processes. The full size range of biota is addressed but emphasis is on the mid-size sediment-dwelling infauna (foraminiferans, metazoan meiofauna and macrofauna), which have received less attention than megafauna or microbes. Megafaunal biomass at seeps, which far exceeds that of surrounding non-seep sediments, is dominated by bivalves (mytilids, vesicomyids, lucinids and thyasirids) and vestimentiferan tube worms, with pogonophorans, cladorhizid sponges, gastropods and shrimp sometimes abundant. In contrast, seep sediments at shelf and upper slope depths have infaunal densities that often differ very little from those in ambient sediments. At greater depths, seep infauna exhibit enhanced densities, modified composition and reduced diversity relative to background sediments. Dorvilleid, hesionid and ampharetid polychaetes, nematodes, and calcareous foraminiferans are dominant. There is extensive spatial heterogeneity of microbes and higher organisms at seeps. Specialized infaunal communities are associated with different seep habitats (microbial mats, clam beds, mussel beds and tube worms aggregations) and with different vertical zones in the sediment. Whereas fluid flow and associated porewater properties, in particular sulphide concentration, appear to regulate the distribution, physiological adaptations and sometimes behaviour of many seep biota, sometimes the reverse is true. Animal-microbe interactions at seeps are complex and involve symbioses, heterotrophic nutrition, geochemical feedbacks and habitat structure. Nutrition of seep fauna varies, with thiotrophic and methanotrophic symbiotic bacteria fueling most of the megafaunal forms but macrofauna and most meiofauna are mainly heterotrophic. Macrofaunal food sources are largely photosynthesis-based at shallower seeps but reflect carbon fixation by chemosynthesis and considerable incorporation of methane-derived C at deeper seeps. Export of seep carbon appears to be highly localized based on limited studies in the Gulf of Mexico. Seep ecosystems remain one of the ocean's true frontiers. Seep sediments represent some of the most extreme marine conditions and offer unbounded opportunities for discovery in the realms of animal-microbe-geochemical interactions, physiology, trophic ecology, biogeography, systematics and evolution.