Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
Cowie, GL, Levin LA.  2009.  Benthic biological and biogeochemical patterns and processes across an oxygen minimum zone (Pakistan margin, NE Arabian Sea). Deep-Sea Research Part Ii-Topical Studies in Oceanography. 56:261-270.   10.1016/j.dsr2.2008.10.001   AbstractWebsite

Oxygen minimum zones (OMZs) impinging on continental margins present sharp gradients ideal for testing environmental factors thought to influence C cycling and other benthic processes, and for identifying the roles that biota play in these processes. Here we introduce the objectives and initial results of a multinational research program designed to address the influences of water depth, the OMZ (similar to 150-1300 m), and organic matter (OM) availability on benthic communities and processes across the Pakistan Margin of the Arabian Sea. Hydrologic, sediment, and faunal characterizations were combined with in-situ and shipboard experiments to quantify and compare biogeochemical processes and fluxes, OM burial efficiency, and the contributions of benthic communities, across the OMZ. In this introductory paper, we briefly review previous related work in the Arabian Sea, building the rationale for integrative biogeochemical and ecological process studies. This is followed by a summary of individual volume contributions and a brief synthesis of results. Five primary stations were studied, at 140, 300, 940,1200 and 1850 m water depth, with sampling in March-May (intermonsoon) and August-October (late-to-postmonsoon) 2003. Taken together, the contributed papers demonstrate distinct cross-margin gradients, not only in oxygenation and sediment OM content, but in benthic community structure and function, including microbial processes, the extent of bioturbation, and faunal roles in C cycling. Hydrographic studies demonstrated changes in the intensity and extent of the OMZ during the SW monsoon, with a shoaling of the upper OMZ boundary that engulfed the previously oxygenated 140-m site. Oxygen profiling and microbial process rate determinations demonstrated dramatic differences in oxygen penetration and consumption across the margin, and in the relative importance of anaerobic processes, but surprisingly little seasonal change. A broad maximum in sediment OM content occurred on the upper slope, roughly coincident with the OMZ; but the otherwise poor correlation with bottom-water oxygen concentrations indicated that other factors are important in determining sediment OM distributions. Downcore profiles generally showed little clear evidence of in-situ OM alteration, and there was little sign of OM enrichment resulting from the southwest monsoon in sediments collected in the late-to-postmonsoon sampling. This is interpreted to be due to rapid cycling of labile OM. Organic geochemical studies confirmed that sediment OM is overwhelmingly of marine origin across the margin, but also that it is heavily altered, with only small changes in degradation state across the OMZ. More negative stable C isotopic compositions in surficial sediments at hypoxic sites within the OMZ core are attributed to a chemosynthetic bacterial imprint. Dramatic changes in benthic community structure occurred across the lower OMZ transition, apparently related to OM availability and quality as well as to DO concentrations. High-resolution sampling, biomarkers and isotope tracer studies revealed that oxygen availability appears to exert threshold-type controls on benthic community structure and early faunal C processing. Biomarker studies also provided evidence of faunal influence on sediment OM composition. Together, the results offer strong evidence that benthic fauna at sites across the margin play important roles in the early cycling of sediment OM through differential feeding and bioturbation activities. (C) 2008 Published by Elsevier Ltd.

Hughes, DJ, Lamont PA, Levin LA, Packer M, Feeley K, Gage JD.  2009.  Macrofaunal communities and sediment structure across the Pakistan margin Oxygen Minimum Zone, North-East Arabian Sea. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 56:434-448.   10.1016/j.dsr2.2008.05.030   AbstractWebsite

Benthic macrofauna and sediment column features were sampled at five stations along a bathymetric transect (depths 140, 300, 940, 1200, 1850 m) through the Pakistan margin Oxygen Minimum Zone (OMZ) during the 2003 intermonsoon (March-May) and late-post-monsoon (August-October) periods. Objectives were to compare patterns with those described from other OMZs, particularly the Oman margin of the Arabian Sea, in order to assess the relative influence of bottom-water oxygenation and sediment organic content on macrofaunal standing stock and community structure. Macrofaunal density was highest at the 140-m station subject to monsoon-driven shoaling of the OMZ, but there was no elevation of density at the lower OMZ boundary (1200 m). Numbers was extremely low in the OMZ core (300 m) and were not readily explicable from the environmental data. There was no consistent depth-related trend in macrofaunal biomass. Macrofaunal densities were consistently lower than found off Oman but there was less contrast in biomass. A significant post-monsoon decline in macrofaunal density at 140 m was driven by selective loss of polychaete taxa. Polychaeta was the most abundant major taxon at all stations but did not dominate the macrofaunal community to the extent reported from Oman. Cirratulidae and Spionidae were major components of the polychaete fauna at most stations but Acrocirridae, Ampharetidae, Amphinomidae and Cossuridae were more important at 940 m. Polychaete assemblages at each station were almost completely distinct at the species level. Polychaete species richness was positively correlated with bottom-water dissolved oxygen and negatively correlated with sediment TOC, C:N ratio and total phytopigments. Community dominance showed the opposite pattern. The strongly inverse correlation between oxygen and measures of sediment organic content made it difficult to distinguish their relative effects. The strongly laminated sediments in the OMZ core contrasted with the homogeneous, heavily bioturbated sediments above and below this zone but were associated with minimal macrofaunal biomass rather than distinctive functional group composition. In general, data from the Oman margin were weak predictors of patterns seen off Pakistan, and results suggest the importance of local factors superimposed on the broader trends of macrofaunal community composition in OMZs. (C) 2008 Elsevier Ltd. All rights reserved.

Gage, JD, Levin LA, Wolff GA.  2000.  Benthic processes in the deep Arabian Sea: introduction and overview. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 47:1-7.   10.1016/S0967-0645(99)00095-8   AbstractWebsite