Publications

Export 27 results:
Sort by: Author Title Type [ Year  (Desc)]
2018
Neira, C, Ingels J, Mendoza G, Hernandez-Lopez E, Levin LA.  2018.  Distribution of meiofauna in bathyal sediments influenced by the oxygen minimum zone off Costa Rica. Frontiers in Marine Science. 5   10.3389/fmars.2018.00448   AbstractWebsite

Ocean deoxygenation has become a topic of increasing concern because of its potential impacts on marine ecosystems, including oxygen minimum zone (OMZ) expansion and subsequent benthic effects. We investigated the influence of oxygen concentration and organic matter (OM) availability on metazoan meiofauna within and below an OMZ in bathyal sediments off Costa Rica, testing the hypothesis that oxygen and OM levels are reflected in meiofaunal community structures and distribution. Mean total densities in our sampling cores (400-1800 m water depth) were highest with 3688 ind. 10 cm(-2) at the OMZ core at 400 m water depth, decreasing rapidly downslope. Nematodes were overall dominant, with a maximum of 99.9% in the OMZ core, followed by copepods (13%), nauplii (4.8%), and polychaetes (3%). Relative copepod and nauplii abundance increased consistently with depth and increasing bottom-water O-2. Meiofaunal composition was significantly different among sites, with lower taxonomic diversity at OMZ sites relative to deeper, oxygenated sites. Vertical distribution patterns within sediments showed that in strongly oxygen-depleted sites less meiofauna was concentrated in the surface sediment than at deeper slope sites. Highest meiofaunal abundance and lowest diversity occurred under lowest oxygen and highest pigment levels, whereas highest diversity occurred under highest oxygen-concentrations and low pigments, as well as high quality of sedimentary pigment (chl a/phaeo) and organic carbon (C/N). The lower meiofaunal diversity, and lower structural and trophic complexity, at oxygen-depleted sites raises concerns about changes in the structure and function of benthic marine ecosystems in the face of OMZ expansions.

2015
Raman, AV, Damodaran R, Levin LA, Ganesh T, Rao YKV, Nanduri S, Madhusoodhanan R.  2015.  Macrobenthos relative to the oxygen minimum zone on the East Indian margin, Bay of Bengal. Marine Ecology-an Evolutionary Perspective. 36:679-700.   10.1111/maec.12176   AbstractWebsite

The Bay of Bengal remains one of the least studied of the world's oxygen minimum zones (OMZs). Here we offer a detailed investigation of the macrobenthos relative to oxygen minimum zone [OMZ - DO (dissolved oxygen), concentration <0.5ml1(-1)] at 110 stations off the North East Indian margin (16(0) and 20(0)N) featuring coastal, shelf and slope settings (10-1004m). Macrobenthos (>0.5mm) composition, abundance and diversity were studied in relation to variations in depth, dissolved oxygen, sediment texture and organic carbon. Using multivariate procedures powered by SIMPROF analysis we identified distinct OMZ core sites (depth 150-280m; DO 0.37ml1(-1)) that exhibited dense populations of surface-feeding polychaetes (mean 2188 ind. m(-2)) represented by spionids and cossurids (96%). Molluscs and crustaceans were poorly represented except for ampeliscid amphipods. The lower OMZ sites (DO>0.55mll(-1)) supported a different assemblage of polychaetes (cirratulids, amphinomids, eunicids, orbinids, paraonids), crustaceans and molluscs, albeit with low population densities (mean 343 ind. m(-2)). Species richness [E(S-100)], diversity (Margalef d; H') and evenness (J') were lower and dominance was higher within the OMZ core region. Multiple regression analysis showed that a combination of sand, clay, organic carbon, and dissolved oxygen explained 62-78% of the observed variance in macrobenthos species richness and diversity: E(S-100) and H'. For polychaetes, clay and oxygen proved important. At low oxygen sites (DO <1mll(-1)), depth accounted for most variance. Residual analysis (after removing depth effects) revealed that dissolved oxygen and sediment organic matter influenced 50-62% of residual variation in E(S-100), H' and d for total macrofauna. Of this, oxygen alone influenced up to similar to 50-62%. When only polychaetes were evaluated, oxygen and organic matter explained up to 58-63%. For low oxygen sites, organic matter alone had the explanatory power when dominance among polychaetes was considered. Overall, macrobenthic patterns in the Bay of Bengal were consistent with those reported for other upwelling margins. However, the compression of faunal gradients at shallower depths was most similar to the Chile/Peru margin, and different from the Arabian Sea, where the depth range of the OMZ is two times greater. The Bay of Bengal patterns may take on added significance as OMZs shoal globally.

2013
Sperling, EA, Frieder CA, Raman AV, Girguis PR, Levin LA, Knoll AH.  2013.  Oxygen, ecology, and the Cambrian radiation of animals. Proceedings of the National Academy of Sciences of the United States of America. 110:13446-13451.   10.1073/pnas.1312778110   AbstractWebsite

The Proterozoic-Cambrian transition records the appearance of essentially all animal body plans (phyla), yet to date no single hypothesis adequately explains both the timing of the event and the evident increase in diversity and disparity. Ecological triggers focused on escalatory predator-prey "arms races" can explain the evolutionary pattern but not its timing, whereas environmental triggers, particularly ocean/atmosphere oxygenation, do the reverse. Using modern oxygen minimum zones as an analog for Proterozoic oceans, we explore the effect of low oxygen levels on the feeding ecology of polychaetes, the dominant macrofaunal animals in deep-sea sediments. Here we show that low oxygen is clearly linked to low proportions of carnivores in a community and low diversity of carnivorous taxa, whereas higher oxygen levels support more complex food webs. The recognition of a physiological control on carnivory therefore links environmental triggers and ecological drivers, providing an integrated explanation for both the pattern and timing of Cambrian animal radiation.

Mora, C, Wei CL, Rollo A, Amaro T, Baco AR, Billett D, Bopp L, Chen Q, Collier M, Danovaro R, Gooday AJ, Grupe BM, Halloran PR, Ingels J, Jones DOB, Levin LA, Nakano H, Norling K, Ramirez-Llodra E, Rex M, Ruhl HA, Smith CR, Sweetman AK, Thurber AR, Tjiputra JF, Usseglio P, Watling L, Wu TW, Yasuhara M.  2013.  Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. Plos Biology. 11   10.1371/journal.pbio.1001682   AbstractWebsite

Ongoing greenhouse gas emissions can modify climate processes and induce shifts in ocean temperature, pH, oxygen concentration, and productivity, which in turn could alter biological and social systems. Here, we provide a synoptic global assessment of the simultaneous changes in future ocean biogeochemical variables over marine biota and their broader implications for people. We analyzed modern Earth System Models forced by greenhouse gas concentration pathways until 2100 and showed that the entire world's ocean surface will be simultaneously impacted by varying intensities of ocean warming, acidification, oxygen depletion, or shortfalls in productivity. In contrast, only a small fraction of the world's ocean surface, mostly in polar regions, will experience increased oxygenation and productivity, while almost nowhere will there be ocean cooling or pH elevation. We compiled the global distribution of 32 marine habitats and biodiversity hotspots and found that they would all experience simultaneous exposure to changes in multiple biogeochemical variables. This superposition highlights the high risk for synergistic ecosystem responses, the suite of physiological adaptations needed to cope with future climate change, and the potential for reorganization of global biodiversity patterns. If co-occurring biogeochemical changes influence the delivery of ocean goods and services, then they could also have a considerable effect on human welfare. Approximately 470 to 870 million of the poorest people in the world rely heavily on the ocean for food, jobs, and revenues and live in countries that will be most affected by simultaneous changes in ocean biogeochemistry. These results highlight the high risk of degradation of marine ecosystems and associated human hardship expected in a future following current trends in anthropogenic greenhouse gas emissions.

Levin, LA, McGregor AL, Mendoza GF, Woulds C, Cross P, Witte U, Gooday AJ, Cowie G, Kitazato H.  2013.  Macrofaunal colonization across the Indian margin oxygen minimum zone. Biogeosciences. 10:7161-7177.   10.5194/bg-10-7161-2013   AbstractWebsite

There is a growing need to understand the ability of bathyal assemblages to recover from disturbance and oxygen stress, as human activities and expanding oxygen minimum zones increasingly affect deep continental margins. The effects of a pronounced oxygen minimum zone (OMZ) on slope benthic community structure have been studied on every major upwelling margin; however, little is known about the dynamics or resilience of these benthic populations. To examine the influence of oxygen and phytodetritus on shortterm settlement patterns, we conducted colonization experiments at 3 depths on the West Indian continental margin. Four colonization trays were deployed at each depth for 4 days at 542 and 802 m (transect 1-16 degrees 58 ' N) and for 9 days at 817 and 1147 m (transect 2-17 degrees 31 ' N). Oxygen concentrations ranged from 0.9 mu M (0.02 mLL(-1)) at 542 m to 22 mu M (0.5 mLL(-1) ) at 1147 m. All trays contained local defaunated sediments; half of the trays at each depth also contained C-13/N-15-labeled phytodetritus mixed into the sediments. Sediment cores were collected between 535 m and 1140 m from 2 cross-margin transects for analysis of ambient (source) macrofaunal (> 300 mu m) densities and composition. Ambient macrofaunal densities ranged from 0 ind m(-2) (at 535-542 m) to 7400 ind m(-2), with maximum values on both transects at 700-800 m. Macrofaunal colonizer densities ranged from 0 ind m(-2) at 542 m, where oxygen was lowest, to average values of 142 ind m(-2) at 800 m, and 3074 ind m(-2) at 1147 m, where oxygen concentration was highest. These were equal to 4.3 and 151% of the ambient community at 800 m and 1147 m, respectively. Community structure of settlers showed no response to the presence of phytodetritus. Increasing depth and oxygen concentration, however, significantly influenced the community composition and abundance of colonizing macrofauna. Polychaetes constituted 92.4% of the total colonizers, followed by crustaceans (4.2%), mollusks (2.5%), and echinoderms (0.8%). The majority of colonizers were found at 1147 m; 88.5% of these were Capitella sp., although they were rare in the ambient community. Colonists at 800 and 1147 m also included ampharetid, spionid, syllid, lumbrinerid, cirratulid, cossurid and sabellid polychaetes. Consumption of C-13/N-15-labeled phytodetritus was observed for macrofaunal foraminifera (too large to be colonizers) at the 542 and 802/817 m sites, and by metazoan macrofauna mainly at the deepest, better oxygenated sites. Calcareous foraminifera (Uvigerina, Hoeglundina sp.), capitellid polychaetes and cumaceans were among the major phytodetritus consumers. These preliminary experiments suggest that bottom-water oxygen concentrations may strongly influence ecosystem services on continental margins, as reflected in rates of colonization by benthos and colonizer processing of carbon following disturbance. They may also provide a window into future patterns of settlement on the continental slope as the world's oxygen minimum zones expand.

2012
Guilini, K, Levin LA, Vanreusel A.  2012.  Cold seep and oxygen minimum zone associated sources of margin heterogeneity affect benthic assemblages, diversity and nutrition at the Cascadian margin (NE Pacific Ocean). Progress in Oceanography. 96:77-92.   10.1016/j.pocean.2011.10.003   AbstractWebsite

Hydrate Ridge (HR), located on the northeastern Pacific margin off Oregon, is characterized by the presence of outcropping hydrates and active methane seepage. Additionally, permanent low oxygen conditions overlay the benthic realm. This study evaluated the relative influence of both seepage and oxygen minima as sources of habitat heterogeneity and potential stress-inducing features on the bathyal metazoan benthos (primarily nematodes) at three different seep and non-seep HR locations, exposed to decreasing bottom-water oxygen concentrations with increasing water depth. The nematode seep communities at HR exhibited low diversity with dominance of only one or two genera (Daptonema and Metadesmolaimus), elevated average individual biomass and delta C-13 evidence for strong dependance on chemosynthesis-derived carbon, resembling deep-sea seeps worldwide. Although the HR seep habitats harbored a distinct nematode community like in other known seep communities, they differed from deep-sea seeps in well-oxygenated waters based on that they shared the dominant genera with the surrounding non-seep sediments overlain by oxygen-deficient bottom water. The homogenizing effect of the oxygen minimum zone on the seep nematode assemblages and surrounding sediments was constant with increasing water depth and concomitant greater oxygen-deficiency, resulting in a loss of habitat heterogeneity. (C) 2011 Elsevier Ltd. All rights reserved.

2010
Gooday, AJ, Bett BJ, Escobar E, Ingole B, Levin LA, Neira C, Raman AV, Sellanes J.  2010.  Habitat heterogeneity and its influence on benthic biodiversity in oxygen minimum zones. Marine Ecology-an Evolutionary Perspective. 31:125-147.   10.1111/j.1439-0485.2009.00348.x   AbstractWebsite

Oxygen minimum zones (OMZs; midwater regions with O(2) concentrations <0.5 ml l(-1)) are mid-water features that intercept continental margins at bathyal depths (100-1000 m). They are particularly well developed in the Eastern Pacific Ocean, the Arabian Sea and the Bay of Bengal. Based on analyses of data from these regions, we consider (i) how benthic habitat heterogeneity is manifested within OMZs, (ii) which aspects of this heterogeneity exert the greatest influence on alpha and beta diversity within particular OMZs and (iii) how heterogeneity associated with OMZs influences regional (gamma) diversity on continental margins. Sources of sea-floor habitat heterogeneity within OMZs include bottom-water oxygen and sulphide gradients, substratum characteristics, bacterial mats, and variations in the organic matter content of the sediment and pH. On some margins, hard grounds, formed of phosphorites, carbonates or biotic substrata, represent distinct subhabitats colonized by encrusting faunas. Most of the heterogeneity associated with OMZs, however, is created by strong sea-floor oxygen gradients, reinforced by changes in sediment characteristics and organic matter content. For the Pakistan margin, combining these parameters revealed clear environmental and faunal differences between the OMZ core and the upper and lower boundary regions. In all Pacific and Arabian Sea OMZs examined, oxygen appears to be the master driver of alpha and beta diversity in all benthic faunal groups for which data exist, as well as macrofaunal assemblage composition, particularly in the OMZ core. However, other factors, notably organic matter quantity and quality and sediment characteristics, come into play as oxygen concentrations begin to rise. The influence of OMZs on meiofaunal, macrofaunal and megafaunal regional (gamma) diversity is difficult to assess. Hypoxia is associated with a reduction in species richness in all benthic faunal groups, but there is also evidence for endemism in OMZ settings. We conclude that, on balance, OMZs probably enhance regional diversity, particularly in taxa such as Foraminifera, which are more tolerant of hypoxia than others. Over evolutionary timescales, they may promote speciation by creating strong gradients in selective pressures and barriers to gene flow.

2009
Levin, LA, Dayton PK.  2009.  Ecological theory and continental margins: where shallow meets deep. Trends in Ecology & Evolution. 24:606-617.   10.1016/j.tree.2009.04.012   AbstractWebsite

Continental margins, where land becomes ocean and plunges to the deep sea, provide valuable food and energy resources, and perform essential functions such as carbon burial and nutrient cycling. They exhibit remarkably high species and habitat diversity, but this is threatened by our increasing reliance on the resources that margins provide, and by warming, expanding hypoxia and acidification associated with climate change. Continental margin ecosystems, with environments, constituents and processes that differ from those in shallow water, demand a new focus, in which ecological theory and experimental methods are brought to bear on management and conservation practices. Concepts of disturbance, diversity-function relationships, top-down versus bottom-up control, facilitation and meta-dynamics offer a framework for studying fundamental processes and understanding future change.

Gooday, AJ, Levin LA, da Silva AA, Bett BJ, Cowie GL, Dissard D, Gage JD, Hughes DJ, Jeffreys R, Lamont PA, Larkin KE, Murty SJ, Schumacher S, Whitcraft C, Woulds C.  2009.  Faunal responses to oxygen gradients on the Pakistan margin: A comparison of foraminiferans, macrofauna and megafauna. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 56:488-502.   10.1016/j.dsr2.2008.10.003   AbstractWebsite

The Pakistan Margin is characterised by a strong mid-water oxygen minimum zone (OMZ) that intercepts the seabed at bathyal depths (150-1300 m). We investigated whether faunal abundance and diversity trends were similar among protists (foraminiferans and gromiids), metazoan macrofauna and megafauna along a transect (140-1850 m water depth) across the OMZ during the 2003 intermonsoon (March-May) and late/post-monsoon (August-October) seasons. All groups exhibited some drop in abundance in the OMZ core (250-500 m water depth; O(2): 0.10-0.13 mL L(-1) = 4.46-5.80 mu M) but to differing degrees. Densities of foraminiferans >63 mu m were slightly depressed at 300 m, peaked at 738 m, and were much lower at deeper stations. Foraminiferans >300 mu m were the overwhelmingly dominant macrofaunal organisms in the OMZ core. Macrofaunal metazoans reached maximum densities at 140 m depth, with additional peaks at 850, 940 and 1850 m where foraminiferans were less abundant. The polychaete Linopherus sp. was responsible for a macrofaunal biomass peak at 950 m. Apart from large swimming animals (fish and natant decapods), metazoan megafauna were absent between 300 and 900 m (O(2) <0.14-0.15 mLL(-1) = 6.25-6.69 mu M) but were represented by a huge, ophiuroid-dominated abundance peak at 1000 m (O(2) similar to 0.15-0.18 mLL(-1) = 6.69-8.03 mu M). Gromiid protists were confined largely to depths below 1150 m (O(2) > 0.2 mLL(-1) = 8.92 mu M). The progressively deeper abundance peaks for foraminiferans (> 63 mu m), Linopherus sp. and ophiuroids probably represent lower OMZ boundary edge effects and suggest a link between body size and tolerance of hypoxia. Macro- and megafaunal organisms collected between 800 and 1100 m were dominated by a succession of different taxa, indicating that the lower part of the OMZ is also a region of rapid faunal change. Species diversity was depressed in all groups in the OMZ core, but this was much more pronounced for macrofauna and megafauna than for foraminiferans. Oxygen levels strongly influenced the taxonomic composition of all faunal groups. Calcareous foraminiferans dominated the seasonally and permanently hypoxic sites (136-300 m); agglutinated foraminiferans were relatively more abundant at deeper stations where oxygen concentrations were >0.13 mLL(-1)( = 5.80 mu M). Polychaetes were the main macrofaunal taxon within the OMZ; calcareous macrofauna, and megafauna (molluscs and echinoderms) were rare or absent where oxygen levels were lowest. The rarity of larger animals between 300 and 700 m on the Pakistan Margin, compared with the abundant macrofauna in the OMZ core off Oman, is the most notable contrast between the two sides of the Arabian Sea. This difference probably reflects the slightly higher oxygen levels and better food quality on the western side. (C) 2008 Published by Elsevier Ltd.

Hughes, DJ, Lamont PA, Levin LA, Packer M, Feeley K, Gage JD.  2009.  Macrofaunal communities and sediment structure across the Pakistan margin Oxygen Minimum Zone, North-East Arabian Sea. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 56:434-448.   10.1016/j.dsr2.2008.05.030   AbstractWebsite

Benthic macrofauna and sediment column features were sampled at five stations along a bathymetric transect (depths 140, 300, 940, 1200, 1850 m) through the Pakistan margin Oxygen Minimum Zone (OMZ) during the 2003 intermonsoon (March-May) and late-post-monsoon (August-October) periods. Objectives were to compare patterns with those described from other OMZs, particularly the Oman margin of the Arabian Sea, in order to assess the relative influence of bottom-water oxygenation and sediment organic content on macrofaunal standing stock and community structure. Macrofaunal density was highest at the 140-m station subject to monsoon-driven shoaling of the OMZ, but there was no elevation of density at the lower OMZ boundary (1200 m). Numbers was extremely low in the OMZ core (300 m) and were not readily explicable from the environmental data. There was no consistent depth-related trend in macrofaunal biomass. Macrofaunal densities were consistently lower than found off Oman but there was less contrast in biomass. A significant post-monsoon decline in macrofaunal density at 140 m was driven by selective loss of polychaete taxa. Polychaeta was the most abundant major taxon at all stations but did not dominate the macrofaunal community to the extent reported from Oman. Cirratulidae and Spionidae were major components of the polychaete fauna at most stations but Acrocirridae, Ampharetidae, Amphinomidae and Cossuridae were more important at 940 m. Polychaete assemblages at each station were almost completely distinct at the species level. Polychaete species richness was positively correlated with bottom-water dissolved oxygen and negatively correlated with sediment TOC, C:N ratio and total phytopigments. Community dominance showed the opposite pattern. The strongly inverse correlation between oxygen and measures of sediment organic content made it difficult to distinguish their relative effects. The strongly laminated sediments in the OMZ core contrasted with the homogeneous, heavily bioturbated sediments above and below this zone but were associated with minimal macrofaunal biomass rather than distinctive functional group composition. In general, data from the Oman margin were weak predictors of patterns seen off Pakistan, and results suggest the importance of local factors superimposed on the broader trends of macrofaunal community composition in OMZs. (C) 2008 Elsevier Ltd. All rights reserved.

Rathburn, AE, Levin LA, Tryon M, Gieskes JM, Martin JM, Perez ME, Fodrie FJ, Neira C, Fryer GJ, Mendoza G, McMillan PA, Kluesner J, Adamic J, Ziebis W.  2009.  Geological and biological heterogeneity of the Aleutian margin (1965-4822 m). Progress in Oceanography. 80:22-50.   10.1016/j.pocean.2008.12.002   AbstractWebsite

Geological, biological and biogeochemical characterization of the previously unexplored margin off Unimak Island, Alaska between 1965 and 4822 m water depth was conducted to examine: (1) the geological processes that shaped the margin, (2) the linkages between depth, geomorphology and environmental disturbance in structuring benthic communities of varying size classes and (3) the existence, composition and nutritional sources of methane seep biota on this margin. The study area was mapped and sampled using multibeam sonar, a remotely operated vehicle (ROV) and a towed camera system. Our results provide the first characterization of the Aleutian margin mid and lower slope benthic communities (micro-biota, foraminifera, macrofauna and megafauna), recognizing diverse habitats in a variety of settings. Our investigations also revealed that the geologic feature known as the "Ugamak Slide" is not a slide at all, and could not have resulted from a large 1946 earthquake. However, sediment disturbance appears to be a pervasive feature of this margin. We speculate that the deep-sea occurrence of high densities of Elphidium, typically a shallow-water foraminiferan, results from the influence of sediment redeposition from shallower habitats. Strong representation of cumacean, amphipod and tanaid crustaceans among the Unimak macrofauna may also reflect sediment instability. Although some faunal abundances decline with depth, habitat heterogeneity and disturbance generated by canyons and methane seepage appear to influence abundances of biota in ways that supercede any clear depth gradient in organic matter input. Measures of sediment organic matter and pigment content as well as C and N isotopic signatures were highly heterogeneous, although the availability of organic matter and the abundance of microorganisms in the upper sediment (1-5 cm) were positively correlated. We report the first methane seep on the Aleutian slope in the Unimak region (3263-3285 m), comprised of clam bed, pogonophoran field and carbonate habitats. Seep foraminiferal assemblages were dominated by agglutinated taxa, except for habitats above the seafloor on pogonophoran tubes. Numerous infaunal taxa in clam bed and pogonophoran field sediments and deep-sea "reef' cnidarians (e.g., corals and hydroids) residing on rocks near seepage sites exhibited light organic delta(13)C signatures indicative of chemosynthetic nutritional sources. The extensive geological, biogeochemical and biological heterogeneity as well as disturbance features observed on the Aleutian slope provide an attractive explanation for the exceptionally high biodiversity characteristic of the world's continental margins. (C) 2008 Elsevier Ltd. All rights reserved.

2008
Andersson, JH, Woulds C, Schwartz M, Cowie GL, Levin LA, Soetaert K, Middelburg JJ.  2008.  Short-term fate of phytodetritus in sediments across the Arabian Sea oxygen minimum zone. Biogeosciences. 5:43-53. AbstractWebsite

The short-term fate of phytodetritus was investigated across the Pakistan margin of the Arabian Sea at water depths ranging from 140 to 1850 m, encompassing the oxygen minimum zone (similar to 100-1100 m). Phytodetritus sedimentation events were simulated by adding similar to 44 mmol (13)C-labelled algal material per m(2) to surface sediments in retrieved cores. Cores were incubated in the dark, at in situ temperature and oxygen concentrations. Overlying waters were sampled periodically, and cores were recovered and sampled (for organisms and sediments) after durations of two and five days. The labelled carbon was subsequently traced into bacterial lipids, foraminiferan and macrofaunal biomass, and dissolved organic and inorganic pools. The majority of the label (20 to 100%) was in most cases left unprocessed in the sediment at the surface. The largest pool of processed carbon was found to be respiration (0 to 25% of added carbon), recovered as dissolved inorganic carbon. Both temperature and oxygen were found to influence the rate of respiration. Macrofaunal influence was most pronounced at the lower part of the oxygen minimum zone where it contributed 11% to the processing of phytodetritus.

2006
Levin, LA, Neira C, Grosholz ED.  2006.  Invasive cordgrass modifies wetland trophic function. Ecology. 87:419-432.   10.1890/04-1752   AbstractWebsite

Vascular plants strongly control belowground environments in most ecosystems. Invasion by vascular plants in coastal wetlands, and by cordgrasses (Spartina spp.) in particular, are increasing in incidence globally, with dramatic ecosystem-level consequences. We examined the trophic consequences of' invasion by a Spartina hybrid (S. alterniflora X S. foliosa) in San Francisco Bay (USA) by documenting differences in biomass and trophic structure of benthic communities between sediments invaded by Spartina and uninvaded sediments. We found the invaded system shifted from all algae-bascd to a detritus-based food web. We then tested for a relationship between diet and tolerance to invasion, hypothesizing that species that consume Spartina detritus are more likely to inhabit invaded sediments than those that consume surface algae. Infaunal diets were initially examined with natural abundance stable isotope analyses and application of mixing models, but these yielded an ambiguous picture of food sources. Therefore, we conducted isotopic enrichment experiments by providing N-15-labeled Spartina detritus both on and below the sediment surface in areas that either contained Spartina or were unvegetated. Capitellid and nereid polychaetes, and oligochaetes, groups shown to persist following Spartina invasion of San Francisco Bay tidal flats, took up N-15 from labeled native and invasive Spartina detritus. In contrast, We found that amphipods, bivalves, and other taxa less tolerant to invasion consumed primarily surficial algae, based oil C-13 enrichment experiments. Habitat (Spartina vs. unvegetated patches) and location of' detritus (on or within sediments) did not affect N-15 uptake from cletritus. Our investigations support a "trophic shift" model for ecosystem response to wetland plant invasion and preview loss of key trophic support for fishes and migratory birds by shifting dominance to species not widely consumed by species at higher trophic levels.

2004
Moseman, SM, Levin LA, Currin C, Forder C.  2004.  Colonization, succession, and nutrition of macrobenthic assemblages in a restored wetland at Tijuana Estuary, California. Estuarine Coastal and Shelf Science. 60:755-770.   10.1016/j.ecss.2004.03.013   AbstractWebsite

Modes of colonization, the successional trajectory, and trophic recovery of a macrofaunal community were analyzed over 19 months in the Friendship marsh, a 20-acre restored wetland in Tijuana Estuary, California. Traditional techniques for quantifying macrofaunal communities were combined with emerging stable isotopic approaches for evaluation of trophic recovery, making comparisons with a nearby natural Spartina foliosa habitat. Life history-based predictions successfully identified major colonization modes, although most taxa employed a variety of tactics for colonizing the restored marsh. The presence of S.foliosa did not seem to affect macrofaunal colonization or succession at the scale of this study. However, soil organic matter content in the restored marsh was positively correlated with insect densities, and high initial salinities may have limited the success of early colonists. Total macrofaunal densities recovered to natural marsh levels after 14 months and diversity, measured as species richness and the Shannon index (H'), was comparable to the natural marsh by 19 months. Some compositional disparities between the natural and created communities persisted after 19 months, including lower percentages of surface-feeding polychaetes (Polydora spp.) and higher percentages of dipteran insects and turbellarians in the Friendship marsh. As surficial structural similarity of infaunal communities between the Friendship and natural habitat was achieved, isotopic analyses revealed a simultaneous trajectory towards recovery of trophic structure. Enriched delta(13)C signatures of benthic microalgae and infauna, observed in the restored marsh shortly after establishment compared to natural Spartina habitat, recovered after 19 months. However, the depletion in delta(15)N signatures of macrofauna in the Friendship marsh indicated consumption of microalgae, particularly nitrogen-fixing cyanobacteria, while macroalgae and Spartina made a larger contribution to macrofaunal diets in the natural habitat. Future successional studies must continue to develop and employ novel combinations of techniques for evaluating structural and functional recovery of disturbed and created habitats. (C) 2004 Elsevier Ltd. All rights reserved.

Gallardo, VA, Palma M, Carrasco FD, Gutierrez D, Levin LA, Canete JI.  2004.  Macrobenthic zonation caused by the oxygen minimum zone on the shelf and slope off central Chile. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 51:2475-2490.   10.1016/j.dsr2.2004.07.028   AbstractWebsite

The relationship between macrobenthic (greater than or equal to 300 mum) zonation and the oxygen minimum zone (OMZ: O(2) < 0.5 ml L(-1)) was studied in shelf and slope sediments (122-840 m depth) off Concepcion Bay, central Chile. Four study sites were sampled during March-April 1999 for abiotic factors, macrofaunal density, biomass, mean individual size, and diversity. Within the OMZ (122-206 m), the macrofaunal density was high (16,478-21,381 individuals m(-2)) and 69-89% of the organisms were soft-bodied. Density was highest (21,381 individuals m(-2)), biomass lowest (16.95 g wet weight m-2), and individual size smallest (0.07 mg C individuals) at the shelf break site (206 m). Polychaete worms made up 71% of the total abundance, crustaceans 16%, and mollusks only 2%. Total abundance beneath the OMZ (mid-slope site, similar to840 m) was 49% crustaceans and 43% polychaetes. Although existing literature originally led to the hypothesis that both diversity and biomass within the OMZ would be lower than beneath the OMZ, in the present study this was only true for diversity. Biomass distribution, on the other hand, was concave along the depth gradient; the highest values were near the upper edge of (122 m) and beneath (840 m) the OMZ. Indices of the macrofaunal community structure varied in relation to bottom-water oxygen concentration, chlorophyll-alpha, phaeopigments, and sulfide concentration, but not in relation to grain size, C, N, mud, porosity, redox potential, a bottom-water temperature. (C) 2004 Published by Elsevier Ltd.

2003
Levin, LA, Rathburn AE, Gutierrez D, Munoz P, Shankle A.  2003.  Bioturbation by symbiont-bearing annelids in near-anoxic sediments: Implications for biofacies models and paleo-oxygen assessments. Palaeogeography Palaeoclimatology Palaeoecology. 199:129-140.   10.1016/s0031-0182(03)00500-5   AbstractWebsite

Anoxic or nearly anoxic conditions ( < 4 muM O(2)) have long been associated with the absence of bioturbation and animal traces. This premise has guided interpretation of paleoceanographic conditions from rocks and sediments. We recently observed a high-density, living assemblage of highly mobile, symbiont-bearing, burrowing, phallodrilinid oligochaetes within a nearly anoxic basin ( <1 muM O(2) [0.02-0.03 ml l(-1)]) on the Peru margin (305 m). These observations were made during the most intense part of the 1997-98 El Ni (n) over tildeo when there may have been slight oxygenation of an otherwise anoxic basin, but oligochaete presence prior to this event is likely. The occurrence of symbiont-bearing gutless oligochaetes mainly within the upper 5 cm of the sediment column coincided with a bioturbated zone overlying distinctly laminated sediments. Our observations redefine the lower oxygen limit of macrofaunal bioturbation to much less than2 muM, and indicate a need to modify currently accepted ideas about the relationship between bioturbation and paleo-oxygen concentration. These results also address an ongoing debate about the lifestyles of bioturbating organisms in oxygen-poor settings. (C) 2003 Elsevier B.V. All rights reserved.

Levin, LA.  2003.  Oxygen minimum zone benthos: Adaptation and community response to hypoxia. Oceanography and Marine Biology, Vol 41. 41:1-45. AbstractWebsite

Mid-water oxygen minima (<0.5ml 1(-1) dissolved O-2) intercept the continental margins along much of the eastern Pacific Ocean, off west Africa and in the Arabian Sea and Bay of Bengal, creating extensive stretches of sea floor exposed to permanent, severe oxygen depletion. These seafloor oxygen minimum zones (OMZs) typically occur at bathyal depths between 200m and 1000m, and are major sites of carbon burial along the continental margins. Despite extreme oxygen depletion, protozoan and metazoan assemblages thrive in these environments. Metazoan adaptations include small, thin bodies, enhanced respiratory surface area, blood pigments such as haemoglobin, biogenic structure formation for stability in soupy sediments, an increased number of pyruvate oxidoreductases, and the presence of sulphide-oxidising symbionts. The organic-rich sediments of these regions often support mats of large sulphide-oxidising bacteria (Thioploca, Beggiatoa, Thiomargarita), and high-density, low-diversity metazoan assemblages. Densities of protistan and metazoan meiofauna are typically elevated in OMZs, probably due to high tolerance of hypoxia, an abundant food supply, and release from predation. Macrofauna and megafauna often exhibit dense aggregations at OMZ edges, but depressed densities and low diversity in the OMZ core, where oxygen concentration is lowest. Taxa most tolerant of severe oxygen depletion (<0.2mll(-1)) in seafloor OMZs include calcareous foraminiferans, nematodes, and annelids. Agglutinated protozoans, harpacticoid copepods, and calcified invertebrates are typically less tolerant. High dominance and relatively low species richness are exhibited by foraminiferans, metazoan meiofauna, and macrofauna within OMZs. At dissolved oxygen concentrations below 0.15 ml l(-1), bioturbation is reduced, the mixed layer is shallow, and chemosynthesis-based nutrition (via heterotrophy and symbiosis) becomes important. OMZs represent a major oceanographic boundary for many species. As they expand and contract over geological time, OMZs may influence genetic diversity and play a key role in the evolution of species at bathyal depths. These ecosystems may preview the types of adaptations, species, and processes that will prevail with increasing hypoxia over ecological and evolutionary time. However, many questions remain unanswered concerning controls on faunal standing stocks in OMZs, and the physiological, enzymatic, metabolic, reproductive and molecular adaptations that permit benthic animals to live in OMZs. As global warming and eutrophication reduce oxygenation of the world ocean, there is a pressing need to understand the functional consequences of oxygen depletion in marine ecosystems.

2002
Levin, L, Gutierrez D, Rathburn A, Neira C, Sellanes J, Munoz P, Gallardo V, Salamanca M.  2002.  Benthic processes on the Peru margin: a transect across the oxygen minimum zone during the 1997-98 El Nino. Progress in Oceanography. 53:1-27.   10.1016/s0079-6611(02)00022-8   AbstractWebsite

Oxygen minimum zones (OMZs) are widespread features in the most productive regions of the world ocean. A holistic view of benthic responses to OMZ conditions will improve our ability to predict ecosystem-level consequences of climatic trends that influence oxygen availability, such as global warming or ENSO-related events. Four stations off Callao, Peru (-12'S, Station A, 305 m; Station B, 562 m; Station C, 830 nu and Station D, 1210 m) were sampled to examine the influence of the low bottom-water oxygen concentration and high organic-matter availability within the OMZ (O(2) < 0.5 ml L(-1)) on sediments, benthic communities, and bioturbation. Sampling took place during early January 1998, an intense El Ni (n) over tildeo period associated with higher-than-normal levels of O(2) on the shelf and upper slope. Peru slope sediments were highly heterogeneous. Sediment total organic carbon content exceeded 16%, lamination was present below 6 cm depth, and filamentous sulfur bacteria (Thioploca spp.) were present at Station A, (305 m, 0, < 0.02 ml L(-1)). Deeper sites contained phosphorite crusts or pellets and exhibited greater bottom-water oxygenation and lower content and quality of organic matter. X-radiographs and (210)Pb and (234)Th profiles suggested the dominance of lateral transport and bioturbation over pelagic sedimentation at the mid- and lower slope sites. Macrofauna, metazoan meiofauna and foraminifera exhibited coherence of density patterns across stations, with maximal densities (and for macrofauna, reduced diversity) at Station A, where bottom-water oxygen concentration was lowest and sediment labile organic matter content (LOC: sum of protein, carbohydrate and lipid carbon) was greatest. Metazoan and protozoan meiofaunal densities were positively correlated with sediment LOC. The taxa most tolerant of nearly anoxic, organic-rich conditions within the Peru OMZ were calcareous foraminifera, nematodes and gutless phallodrilinid (symbiont-bearing) oligochaetes. Agglutinated foraminifera, harpacticoid copepods, polychaetes and many other macrofaunal taxa increased in relative abundance below the OMZ. During the study (midpoint of the 1997-98 El Ni (n) over tildeo), the upper OMZ boundary exhibited a significant deepening (to 190 m) relative to 'normal', non-El Ni (n) over tildeo conditions (< 100 m), possibly causing a mild, transient oxygenation over the upper slope (200-300 m) and reduction of the organic particle flux to the seabed. Future sampling may determine whether the Peru margin system exhibits dynamic responses to changing ENSO-related conditions. (C) 2002 Elsevier Science Ltd. All rights reserved.

2001
Gooday, AJ, Hughes JA, Levin LA.  2001.  The foraminiferan macrofauna from three North Carolina (USA) slope sites with contrasting carbon flux: a comparison with the metazoan macrofauna. Deep-Sea Research Part I-Oceanographic Research Papers. 48:1709-1739.   10.1016/s0967-0637(00)00098-4   AbstractWebsite

Food supply exerts a strong influence on benthic faunal abundance and community structure. Here, we compare community-level responses of macrofaunal foraminiferans and metazoans ( > 300 mum fraction) in relation to a gradient of organic carbon flux [Site III > II > I] along the 850 m contour on the North Carolina slope. Foraminiferan density, species richness E(S(100)), and dominance were positively correlated with organic carbon flux;. Foraminiferans were more abundant at Site III, displayed lower diversity and higher dominance, and tended to live deeper in the sediment column than at either Sites I or II. The Site I fauna was dominated by agglutinated taxa (mainly simple monothalamous forms and hormosinaceans) and included large epifaunal species, some of which projected from the sediment surface and probably fed on fresh phytodetritus. Hormosinaceans and monothalamous taxa also were abundant at Site II, although large epifaunal taxa were not present. The Site III fauna was dominated by calcareous tare. The most abundant species was Globobulimina auriculata, an infaunal, low-oxygen tolerant, deposit feeder with a calcareous test sometimes obscured by an agglutinated cyst. Plate-like or flattened fragments of small xenophyophore species occurred at Site I, an unusually shallow record for this taxon and the first from the North Carolina margin. Most of these fragments were dead. Xenophyophores were not present at Sites II and III. The metazoan macrofauna exhibited trends in density, diversity, dominance and vertical distribution within the sediment that parallel those of the foraminiferans and were correlated with between-site differences in food availability. However, metazoans were 4.5-6.5 times less abundant than the foraminiferans, were more diverse, exhibited lower dominance and (at least at Sites I and III) tended to penetrate the sediment less deeply, These differences suggest that foraminiferans, considered as a group, are more opportunistic than metazoans, tolerate oxygen depletion better, and have population dynamics that are more closely coupled to organic matter inputs than those of metazoans. Foraminiferan diversity trends are even more similar to those of the polychaetes at these sites, suggesting that there are ecological parallels between the two taxa despite their fundamental phylogenetic and structural differences. Foraminiferans are a ubiquitous yet frequently overlooked component of the macrofauna on continental margins that experience a broad range of organic input regimes. They deserve to be considered more often in macrofaunal studies addressing interactions between organisms and their environments. (C) 2001 Elsevier Science Ltd. All rights reserved.

Levin, LA, Boesch DF, Covich A, Dahm C, Erseus C, Ewel KC, Kneib RT, Moldenke A, Palmer MA, Snelgrove P, Strayer D, Weslawski JM.  2001.  The function of marine critical transition zones and the importance of sediment biodiversity. Ecosystems. 4:430-451.   10.1007/s10021-001-0021-4   AbstractWebsite

Estuaries and coastal wetlands are critical transition zones (CTZs) that link land, freshwater habitats, and the sea. CTZs provide essential ecological functions, including decomposition, nutrient cycling, and nutrient production, as well as regulation of fluxes of nutrients, water, particles, and organisms to and from land, rivers, and the ocean. Sediment-associated biota are integral to these functions. Functional groups considered essential to CTZ processes include heterotrophic bacteria and fungi, as well as many benthic invertebrates. Key invertebrate functions include shredding, which breaks down and recycles organic matter; suspension feeding, which collects and transports sediments across the sediment-water interface; and bioturbating, which moves sediment into or out of the seabed. In addition, macrophytes regulate many aspects of nutrient, particle, and organism dynamics above- and belowground. Animals moving within or through CTZs are vectors that transport nutrients and organic matter across terrestrial, freshwater, and marine interfaces. Significant threats to biodiversity within CTZs are posed by anthropogenic influences; eutrophication, nonnutrient pollutants, species invasions, overfishing, habitat alteration, and climate change affect species richness or composition in many coastal environments. Because biotic diversity in marine CTZ sediments is inherently low whereas their functional significance is great, shifts in diversity are likely to be particularly important. Species introductions (from invasion) or loss (from overfishing or habitat alteration) provide evidence that single-species changes can have overt, sweeping effects on CTZ structure and function. Certain species may be critically important to the maintenance of ecosystem functions in CTZs even though at present there is limited empirical evidence that the number of species in CTZ sediments is critical. We hypothesized that diversity is indeed important to ecosystem function in marine CTZs because high diversity maintains positive interactions among species (facilitation and mutualism), promoting stability and resistance to invasion or other forms of disturbance. The complexity of interactions among species and feedbacks with ecosystem functions suggests that comparative (mensurative) and manipulative approaches will be required to elucidate the role of diversity in sustaining CTZ functions.

2000
Gooday, AJ, Bernhard JM, Levin LA, Suhr SB.  2000.  Foraminifera in the Arabian Sea oxygen minimum zone and other oxygen-deficient settings: taxonomic composition, diversity, and relation to metazoan faunas. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 47:25-54.   10.1016/s0967-0645(99)00099-5   AbstractWebsite

Previous work has shown that some foraminiferal species thrive in organically enriched, oxygen-depleted environments. Here, we compare 'live' (stained) faunas in multicorer samples (0-1 cm layer) obtained at two sites on the Oman margin, one located at 412m within the oxygen minimum zone (OMZ) (O(2) = 0.13 ml l(-1)), the other located at 3350 m, well below the main OMZ (O(2) similar to 3.00 ml l(-1)). While earlier studies have focused on the hard-shelled (predominantly calcareous) foraminifera, we consider complete stained assemblages, including poorly known, soft-shelled, monothalamous forms. Densities at the 412-m site were much higher (16,107 individuals.10 cm(-2) in the > 63-mu m fraction) than at the 3350-m site (625 indiv.10 cm(-2)). Species richness (E(S(100))), diversity (H', Fishers Alpha index) and evenness (J') were much lower, and dominance (R1D) was higher, at 412 m compared with 3350 m. At 412 m, small calcareous foraminifera predominated and soft-shelled allogromiids and sacamminids were a minor faunal element. At 3350 m, calcareous individuals were much less common and allogromiids and saccamminids formed a substantial component of the fauna. There were also strong contrasts between the foraminiferal macrofauna( > 300-mu m fraction) at these two sites; relatively small species of Bathysiphon, Globobulimina and Lagenammina dominated at 412 m, very large, tubular, agglutinated species of Bathysiphon, Hyperammina, Rhabdammina and Saccorhiza were important at 3350 m. Our observations suggest that, because they contain fewer soft-shelled and agglutinated foraminifera, a smaller proportion of bathyal, low-oxygen faunas is lost during fossilization compared to faunas from well-oxygenated environments. Trends among foraminifera (> 63 mu m fraction) in the Santa Barbara Basin (590 and 610m depth; O(2) = 0.05 and 0.15 ml(-1) respectively), and macrofaunal foraminifera(> 300 mu m) on the Peru margin (300-1250 m depth: O(2) = 0.02-1.60 mi l(-1)), matched those observed on the Oman margin. Tn particular, soft-shelled monothalamous taxa were rare and large agglutinated taxa were absent in the most oxygen-depleted ( < 0.20 mi l(-1)) stations. Foraminifera often outnumber metazoans (both meiofaunal and macrofaunal) in bathyal oxygen-depleted settings. However, although phylogenetically distant, foraminifera and metazoans exhibit similar population responses to oxygen depletion; species diversity decreases, dominance increases, and the relative abundance of the major taxa changes. The foraminiferal macrofauna ( > 300 mu m) were 5 times more abundant than the metazoan macrofauna at 412 m on the Oman margin but 16 times more abundant at the 3350 m site. Among the meiofauna (63-300 mu m), the trend was reversed, foraminifera were 17 times more abundant than metazoan taxa at 412 m but only 1.4 times more abundant at 3350 In. An abundance of food combined with oxygen levels which are not depressed sufficiently to eliminate the more tolerant taxa, probably explains why foraminifera and macrofaunal metazoans flourished at the 412-m site, perhaps to the detriment of the metazoan meiofauna. (C) 1999 Elsevier Science Ltd. All rights reserved.

Levin, LA, Gage JD, Martin C, Lamont PA.  2000.  Macrobenthic community structure within and beneath the oxygen minimum zone, NW Arabian Sea. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 47:189-226.   10.1016/s0967-0645(99)00103-4   AbstractWebsite

Investigations of macrobenthos were carried out within and beneath the oxygen minimum zone (OMZ, < 0.5 ml l(-1)) during Fall 1994 on the Oman margin, NW Arabian Sea. Six stations (400, 700, 850, 1000, 1250 and 3400m) were characterized with respect to macrofaunal abundance, biomass, body size, taxonomic composition, diversity and lifestyles, and the relation of these parameters to environmental conditions. The OMZ (400-1000 m) was dominated by a dense (5818-19,183 ind m(-2)), soft-bodied assemblage consisting largely (86-99%) of surface-feeding polychaetes, Spionids and cirratulids dominated at the 400- and 700-m stations, paraonids and ampharetids at the 850- and 1000-m stations. Molluscs and most crustaceans were common only below the OMZ ( greater than or equal to 1250 m); a species of the amphipod Ampelisca was abundant within the OMZ, however. Both density and biomass were elevated within the OMZ relative to stations below but body size did not differ significantly among stations. The lower OMZ boundary (0.5 ml l(-1)) was not a zone of enhanced macrofaunal standing stock, as originally hypothesized. However, abundance maxima at 700-850m may reflect an oxygen threshold (0.15-0.20 ml l(-1)) above which macrofauna take advantage of organically enriched sediments. Incidence of burrowing and subsurface-deposit feeding increased below the OMZ, Species richness (E[S(100)]), diversity (H') and evenness (J') were lower and dominance (R1D) was higher within than beneath the OMZ. Within-station (between-boxcore) faunal heterogeneity increased markedly below the OMZ. Surface sediment pigment concentrations and oxygen together explained 96-99% of the variance in measures of E[S(100)], H' and J' across the transect; grain size and % TOC did not yield significant regressions. Pigments, assumed to reflect food availability and possibly oxygen effects on organic matter preservation, were negatively correlated with species richness and evenness, and positively correlated with dominance. The reverse was true for water depth. Macrobenthic patterns of calcification and lifestyle within the Oman margin OMZ (0.13-0.3 mi l(-1)) match the dysaerobic biofacies of paleo-environmental reconstruction models. (C) 1999 Elsevier Science Ltd. All rights reserved.

Smith, CR, Levin LA, Hoover DJ, McMurtry G, Gage JD.  2000.  Variations in bioturbation across the oxygen minimum zone in the northwest Arabian Sea. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 47:227-257.   10.1016/s0967-0645(99)00108-3   AbstractWebsite

Oxygen minimum zones are expected to alter substantially the nature, rates and depths of bioturbation along continental margins, yet these effects remain poorly studied. Using excess (210)Pb profiles, sediment X-radiography and box-core samples for macrofauna, we examined bioturbation processes at six stations (400, 700, 850, 1000, 1250 and 3400 m deep) along a transect across the oxygen minimum zone (OMZ) on the Oman margin. Bottom-water oxygen concentrations ranged from similar to 0.13 mi l(-1) at 400 m to similar to 2.99 mi l(-1) at 3400 m. (210)Pb mixed-layer depth and bioturbation intensity (D(b)) exhibited high within-station variance, and means did not differ significantly among stations. However, the mean mixed-layer depth (4.6 cm) for pooled OMZ stations (400-1000 m depths, 0.13-0.27 mi l(-1) bottom-water oxygen) was half that for stations from similar water depths along well-oxygenated Atlantic and Pacific slopes (11.1 cm), suggesting that oxygen stress reduced (210)Pb mixing depth on the Oman margin. Modal burrow diameter and the diversity of burrow types at a station were highly correlated with bottom-water oxygen concentration from the edge to the core of the Oman OMZ (Spearman's rho greater than or equal to 0.89, p less than or equal to 0.02), suggesting that these parameters are useful proxies for bottom-water oxygen concentrations under dysaerobic conditions. In contrast, neither the maximum diameter and nor the maximum penetration depth of open burrows exhibited oxygen-related patterns along the transect. Reduced (210)Pb mixing depth within the Oman-margin OMZ appeared to result from a predominance of surface-deposit feeders and tube builders within this zone, rather than from simple changes in horizontal or vertical distributions of macrofaunal abundance or biomass. The number of burrow types per station was highly correlated with macrofaunal species diversity, suggesting that burrow diversity may be a good proxy for species diversity in paleo-dysaerobic assemblages. We conclude that bottom-water oxygen concentrations of 0.13-0.27 mi l(-1) substantially alter a number of bioturbation parameters of importance to diagenetic and biofacies models for continental margins. (C) 1999 Elsevier Science Ltd. All rights reserved.

1999
Fornes, WL, Demaster DJ, Levin LA, Blair NE.  1999.  Bioturbation and particle transport in Carolina slope sediments: A radiochemical approach. Journal of Marine Research. 57:335-355.   10.1357/002224099321618245   AbstractWebsite

In situ tracer experiments investigated short-term sediment mixing processes at two Carolina continental margin sites (water depth = 850 m) characterized by different organic C fluxes, (234)Th mixing coefficients (D(b)) and benthic assemblages. Phytoplankton, slope sediment, and sand-sized glass beads tagged with (210)Pb, (113)Sn, and (228)Th, respectively, were placed via submersible at the sediment-water interface at both field sites (Site I off Cape Fear, and Site m off Cape Hatteras). Experimental plots were sampled at 0, 1.5 days, and 90 days after tracer emplacement to examine short-term, vertical transport. Both sites are initially dominated by nonlocal mixing. Transport to the bottom of the surface mixed layer at both sites occurs more rapidly than (234)Th-based D(b) values predict; after 1.5 days, tagged particles were observed 5 cm below the sediment-water interface at Site I and 12 cm below at Site III. Impulse tracer profiles after 90 days at Site m exhibit primarily diffusive distributions, most likely due to a large number of random, nonlocal mixing events. The D(b) values determined from 90-day particle tagging experiments are comparable to those obtained from naturally occurring (234)Th profiles (similar to 100-day time scales) from nearby locations. The agreement between impulse tracer mixing coefficients and steady-state natural tracer mixing coefficients suggests that the diffusive analogue for bioturbation on monthly time scales is a realistic and useful approach. Tracer profiles from both sites exhibit some degree of particle selective mixing, but the preferential transport of the more labile carbon containing particles only occurred 30% of the time. Consequently, variations in the extent to which age-dependent mixing occurs in marine sediments may depend on factors such as faunal assemblage and organic carbon flux.

Thistle, D, Levin LA, Gooday AJ, Pfannkuche O, Lambshead PJD.  1999.  Physical reworking by near-bottom flow alters the metazoan meiofauna of Fieberling Guyot (northeast Pacific). Deep-Sea Research Part I-Oceanographic Research Papers. 46:2041-2052.   10.1016/s0967-0637(99)00040-0   AbstractWebsite

Although much of the deep sea is physically tranquil, some regions experience near-bottom flows that rework the surficial sediment. During periods of physical reworking, animals in the reworked layer risk being suspended, which can have both positive and negative effects. Reworking can also change the sediment in ecologically important ways, so the fauna of reworked sites should differ from that of quiescent locations. We combined data from two reworked, bathyal sites on the summit of Fieberling Guyot (32 degrees 27.631'N, 127 degrees 49.489'W; 32 degrees 27.581'N, 127 degrees 47.839'W) and compared the results with those of more tranquil sites. We tested for differences in the following parameters, which seemed likely to be sensitive to the direct or indirect effects of reworking: (1) the vertical distribution of the meiofauna in the sea bed, (2) the relative abundance of surface-living harpacticoids, (3) the proportion of the fauna consisting of interstitial harpacticoids, (4) the ratio of harpacticoids to nematodes. We found that the vertical distributions of harpacticoid copepods, ostracods, and kinorhynchs were deeper on Fieberling. In addition, the relative abundance of surface-living harpacticoids was less, the proportion of interstitial harpacticoids was greater, and the ratio of harpacticoids to nematodes was greater on Fieberling. These differences between Fieberling and the comparison sites suggest that physical reworking affects deep-sea meiofauna and indicate the nature of some of the effects. (C) 1999 Elsevier Science Ltd. AII rights reserved.