Export 11 results:
Sort by: Author Title Type [ Year  (Desc)]
Neira, C, Ingels J, Mendoza G, Hernandez-Lopez E, Levin LA.  2018.  Distribution of meiofauna in bathyal sediments influenced by the oxygen minimum zone off Costa Rica. Frontiers in Marine Science. 5   10.3389/fmars.2018.00448   AbstractWebsite

Ocean deoxygenation has become a topic of increasing concern because of its potential impacts on marine ecosystems, including oxygen minimum zone (OMZ) expansion and subsequent benthic effects. We investigated the influence of oxygen concentration and organic matter (OM) availability on metazoan meiofauna within and below an OMZ in bathyal sediments off Costa Rica, testing the hypothesis that oxygen and OM levels are reflected in meiofaunal community structures and distribution. Mean total densities in our sampling cores (400-1800 m water depth) were highest with 3688 ind. 10 cm(-2) at the OMZ core at 400 m water depth, decreasing rapidly downslope. Nematodes were overall dominant, with a maximum of 99.9% in the OMZ core, followed by copepods (13%), nauplii (4.8%), and polychaetes (3%). Relative copepod and nauplii abundance increased consistently with depth and increasing bottom-water O-2. Meiofaunal composition was significantly different among sites, with lower taxonomic diversity at OMZ sites relative to deeper, oxygenated sites. Vertical distribution patterns within sediments showed that in strongly oxygen-depleted sites less meiofauna was concentrated in the surface sediment than at deeper slope sites. Highest meiofaunal abundance and lowest diversity occurred under lowest oxygen and highest pigment levels, whereas highest diversity occurred under highest oxygen-concentrations and low pigments, as well as high quality of sedimentary pigment (chl a/phaeo) and organic carbon (C/N). The lower meiofaunal diversity, and lower structural and trophic complexity, at oxygen-depleted sites raises concerns about changes in the structure and function of benthic marine ecosystems in the face of OMZ expansions.

Neira, C, King I, Mendoza G, Sellanes J, De Ley P, Levin LA.  2013.  Nematode community structure along a central Chile margin transect influenced by the oxygen minimum zone. Deep Sea Research Part I: Oceanographic Research Papers. 78:1-15.   AbstractWebsite

Nematodes are among the metazoans most tolerant of low-oxygen conditions and play major roles in seafloor ecosystem processes. Nematode communities were studied in sediments off Concepción, Central Chile, spanning the outer shelf within the OMZ (122 m) to the mid-lower continental slope (972 m) beneath the OMZ. The total density and biomass of nematodes (core depth 0–10 cm) ranged from 677 to 2006 ind. 10 cm−2, and 168.4 to 506.5 µg DW 10 cm−2, respectively. Among metazoan meiofaunal taxa, nematodes predominated at all sites both in terms of relative abundance (83.7–99.4%) and biomass (53.8–88.1%), followed by copepods, nauplii and polychaetes. Nematodes were represented by 33 genera distributed among 17 families, with densities greatest at low oxygen sites (122–364 m; ~2000 ind. 10 cm−2). Nematode generic and trophic diversity, and individual biomass were lowest, and Rank 1 dominance was highest, at the most oxygen-depleted site (122 m), despite the fact that the organic carbon content of the sediment was maximal at this depth. At the most oxygenated slope sites (827 and 972 m), all of Wieser's nematode feeding groups were represented. In contrast, at the lowest-oxygen site, only selective deposit (bacterial) feeders (1A) were present, indicating a reduction in trophic complexity. A large percentage of nematodes inhabited subsurface sediment layers (>1 cm). At deeper, more oxygenated sites (827 and 972 m), nematode individual biomass increased downcore, while within the OMZ, nematode biomass was low and remained relatively uniform through the sediment column. The concentration of nematodes in deeper sediment layers, the vertical distribution of the feeding groups, as well as the high nutritional quality of the deeper layers, suggest a differential resource partitioning of the food available, which may reduce interspecific competition.

Cordes, EE, Cunha MR, Galeron J, Mora C, Olu-Le Roy K, Sibuet M, Van Gaever S, Vanreusel A, Levin LA.  2010.  The influence of geological, geochemical, and biogenic habitat heterogeneity on seep biodiversity. Marine Ecology-an Evolutionary Perspective. 31:51-65.   10.1111/j.1439-0485.2009.00334.x   AbstractWebsite

Cold seeps are among the most heterogeneous of all continental margin habitats. Abiotic Sources of heterogeneity in these systems include local variability in fluid flow, geochemistry, and substrate type, which give rise to different sets of microbial communities, microbial symbiont-bearing foundation species, and associated heterotrophic species. Biogenic habitats created by microbial mats and the symbiotic species including vesicomyid clams, bathymodiolin mussels, and siboglinid tubeworms add an additional layer of complexity to seep habitats. These forms of habitat heterogeneity result in a variety of macrofaunal and meiofaunal communities that respond to changes in structural complexity, habitat geochemistry, nutrient sources, and interspecific interactions in different ways and at different scales. These responses are predicted by a set of theoretical metacommunity models, the most appropriate of which for seep systems appears to be the 'species sorting' concept, an extension of niche theory. This concept is demonstrated through predictable patterns of community assembly, succession, and beta-level diversity. These processes are described using a newly developed analytical technique examining the change in the slope of the species accumulation curve with the number of habitats examined. The diversity response to heterogeneity has a consistent form, but quantitatively changes at different seep sites around the world as the types of habitats present and the size-classes of fauna analyzed change. The increase in beta diversity across seep habitat types demonstrates that cold seeps and associated biogenic habitats are significant sources of heterogeneity on continental margins globally.

Arntz, WE, Gallardo VA, Gutierrez D, Isla E, Levin LA, Mendo J, Neira C, Rowe GT, Tarazona J, Wolff M.  2006.  El Niño and similar perturbation effects on the benthos of the Humboldt, California, and Benguela Current upwelling ecosystems. Advances in Geosciences. 6:243-265.: European Geosciences Union, c/o E.O.S.T. 5, rue Rene Descartes Strasbourg Cedex 67084 France, [], [URL:] AbstractWebsite

To a certain degree, Eastern Boundary Current (EBC) ecosystems are similar: Cold bottom water from moderate depths, rich in nutrients, is transported to the euphotic zone by a combination of trade winds, Coriolis force and Ekman transport. The resultant high primary production fuels a rich secondary production in the upper pelagic and nearshore zones, but where O sub(2) exchange is restricted, it creates oxygen minimum zones (OMZs) at shelf and upper slope (Humboldt and Benguela Current) or slope depths (California Current). These hypoxic zones host a specifically adapted, small macro- and meiofauna together with giant sulphur bacteria that use nitrate to oxydise H sub(2)S. In all EBC, small polychaetes, large nematodes and other opportunistic benthic species have adapted to the hypoxic conditions and co-exist with sulphur bacteria, which seem to be particularly dominant off Peru and Chile. However, a massive reduction of macrobenthos occurs in the core of the OMZ. In the Humboldt Current area the OMZ ranges between <100 and about 600 m, with decreasing thickness in a poleward direction. The OMZ merges into better oxygenated zones towards the deep sea, where large cold-water mega- and macrofauna occupy a dominant role as in the nearshore strip. The Benguela Current OMZ has a similar upper limit but remains shallower. It also hosts giant sulphur bacteria but little is known about the benthic fauna. However, sulphur eruptions and intense hypoxia might preclude the coexistence of significant mega- und macrobenthos. Conversely, off North America the upper limit of the OMZ is considerably deeper (e.g., 500-600 m off California and Oregon), and the lower boundary may exceed 1000m. The properties described are valid for very cold and cold (La Nina and "normal") ENSO conditions with effective upwelling of nutrient-rich bottom water. During warm (El Nino) episodes, warm water masses of low oxygen concentration from oceanic and equatorial regions enter the upwelling zones, bringing a variety of (sub)tropical immigrants. The autochthonous benthic fauna emigrates to deeper water or poleward, or suffers mortality. However, some local macrofaunal species experience important population proliferations, presumably due to improved oxygenation (in the southern hemisphere), higher temperature tolerance, reduced competition or the capability to use different food. Both these negative and positive effects of el Nino influence local artisanal fisheries and the livelihood of coastal populations. In the Humboldt Current system the hypoxic seafloor at outer shelf depths receives important flushing from the equatorial zone, causing havoc on the sulphur bacteria mats and immediate recolonisation of the sediments by mega- and macrofauna. Conversely, off California, the intruding equatorial water masses appear to have lower oxygen than ambient waters, and may cause oxygen deficiency at upper slope depths. Effects of this change have not been studied in detail, although shrimp and other taxa appear to alter their distribution on the continental margin. Other properties and reactions of the two Pacific EBC benthic ecosystems to el Nino seem to differ, too, as does the overall impact of major episodes (e.g., 1982/1983(1984) vs. 1997/1998). The relation of the "Benguela Nino" to ENSO seems unclear although many Pacific- Atlantic ocean and atmosphere teleconnections have been described. Warm, low- oxygen equatorial water seems to be transported into the upwelling area by similar mechanisms as in the Pacific, but most major impacts on the eukaryotic biota obviously come from other, independent perturbations such as an extreme eutrophication of the sediments ensuing in sulphidic eruptions and toxic algal blooms. Similarities and differences of the Humboldt and California Current benthic ecosystems are discussed with particular reference to ENSO impacts since 1972/73. Where there are data available, the authors include the Benguela Current ecosystem as another important, non-Pacific EBC, which also suffers from the effects of hypoxia.

Levin, L, Gutierrez D, Rathburn A, Neira C, Sellanes J, Munoz P, Gallardo V, Salamanca M.  2002.  Benthic processes on the Peru margin: a transect across the oxygen minimum zone during the 1997-98 El Nino. Progress in Oceanography. 53:1-27.   10.1016/s0079-6611(02)00022-8   AbstractWebsite

Oxygen minimum zones (OMZs) are widespread features in the most productive regions of the world ocean. A holistic view of benthic responses to OMZ conditions will improve our ability to predict ecosystem-level consequences of climatic trends that influence oxygen availability, such as global warming or ENSO-related events. Four stations off Callao, Peru (-12'S, Station A, 305 m; Station B, 562 m; Station C, 830 nu and Station D, 1210 m) were sampled to examine the influence of the low bottom-water oxygen concentration and high organic-matter availability within the OMZ (O(2) < 0.5 ml L(-1)) on sediments, benthic communities, and bioturbation. Sampling took place during early January 1998, an intense El Ni (n) over tildeo period associated with higher-than-normal levels of O(2) on the shelf and upper slope. Peru slope sediments were highly heterogeneous. Sediment total organic carbon content exceeded 16%, lamination was present below 6 cm depth, and filamentous sulfur bacteria (Thioploca spp.) were present at Station A, (305 m, 0, < 0.02 ml L(-1)). Deeper sites contained phosphorite crusts or pellets and exhibited greater bottom-water oxygenation and lower content and quality of organic matter. X-radiographs and (210)Pb and (234)Th profiles suggested the dominance of lateral transport and bioturbation over pelagic sedimentation at the mid- and lower slope sites. Macrofauna, metazoan meiofauna and foraminifera exhibited coherence of density patterns across stations, with maximal densities (and for macrofauna, reduced diversity) at Station A, where bottom-water oxygen concentration was lowest and sediment labile organic matter content (LOC: sum of protein, carbohydrate and lipid carbon) was greatest. Metazoan and protozoan meiofaunal densities were positively correlated with sediment LOC. The taxa most tolerant of nearly anoxic, organic-rich conditions within the Peru OMZ were calcareous foraminifera, nematodes and gutless phallodrilinid (symbiont-bearing) oligochaetes. Agglutinated foraminifera, harpacticoid copepods, polychaetes and many other macrofaunal taxa increased in relative abundance below the OMZ. During the study (midpoint of the 1997-98 El Ni (n) over tildeo), the upper OMZ boundary exhibited a significant deepening (to 190 m) relative to 'normal', non-El Ni (n) over tildeo conditions (< 100 m), possibly causing a mild, transient oxygenation over the upper slope (200-300 m) and reduction of the organic particle flux to the seabed. Future sampling may determine whether the Peru margin system exhibits dynamic responses to changing ENSO-related conditions. (C) 2002 Elsevier Science Ltd. All rights reserved.

Neira, C, Sellanes J, Levin LA, Arntz WE.  2001.  Meiofaunal distributions on the Peru margin: relationship to oxygen and organic matter availability. Deep-Sea Research Part I-Oceanographic Research Papers. 48:2453-2472.   10.1016/s0967-0637(01)00018-8   AbstractWebsite

A quantitative study of metazoan meiofauna was carried out on bathyal sediments (305, 562, 830 and 1210 m) along a transect within and beneath the oxygen minimum zone (OMZ) in the southeastern Pacific off Callao, Peru (12 degreesS). Meiobenthos densities ranged from 1517 (upper slope, middle of OMZ) to 440-548 ind. 10cm(-2) (lower slope stations, beneath the OMZ). Nematodes were the numerically dominant meiofaunal taxon at every station, followed by copepods and nauplii. Increasing bottom-water oxygen concentration and decreasing organic matter availability downslope were correlated with observed changes in meiofaunal abundance. The 300-m site, located in the middle of the OMZ, differed significantly in meiofaunal abundance, dominance, and in vertical distribution pattern from the deeper sites. At 305 m, nematodes amounted to over 99% of total meiofauna; about 70% of nematodes were found in the 2-5 cm. interval. At the deeper sites, about 50% were restricted to the top I cm. The importance of copepods and nauplii increased consistently with depth, reaching similar to 12% of the total meiofauna at the deepest site. The observation of high nematode abundances at oxygen concentrations <0.02mll(-1) supports the hypothesis that densities are enhanced by an indirect positive effect of low oxygen involving (a) reduction of predators and competitors and (b) preservation of organic matter leading to high food availability and quality. Food input and quality, represented here by chloroplastic pigment equivalents (CPE) and sedimentary labile organic compounds (protein, carbohydrates and lipids), were strongly, positively correlated with nematode abundance. By way of contrast, oxygen exhibited a strong negative correlation, overriding food availability, with abundance of other meiofauna such as copepods and nauplii. These taxa were absent at the 300-m site. The high correlation of labile organic matter (C-LOM, sum of carbon contents in lipids, proteins and carbohydrates) with CPE (Pearson's r = 0.99, p <0.01) suggests that most of the sedimentary organic material sampled was of phytodetrital origin. The fraction of sediment organic carbon potentially available to benthic. heterotrophs, measured as C-LOM/Total organic carbon, was on average 17% at all stations. Thus, a residual, refractory fraction, constitutes the major portion of organic matter at the studied bathyal sites. (C) 2001 Elsevier Science Ltd. All rights reserved.

Cook, AA, Lambshead PJD, Hawkins LE, Mitchell N, Levin LA.  2000.  Nematode abundance at the oxygen minimum zone in the Arabian Sea. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 47:75-85.   10.1016/s0967-0645(99)00097-1   AbstractWebsite

This paper supports the hypothesis that low oxygen does not influence deep-sea nematode abundance by investigating an oxygen minimum zone (OMZ) on the Oman slope in the Arabian Sea. Correlation with a number of environmental variables indicated that food quality (measured as the hydrogen index) rather than oxygen was the major predictor of nematode abundance. Nematode abundance was also positively correlated with abundance of total macrofauna, annelids, spionid polychaetes and macrofaunal tube builders. Comparison with published data showed Arabian Sea nematode abundance to be similar to that of the Porcupine Seabight and Bay of Biscay regions of the northeast Atlantic, which also receive significant quantities of phytodetritus but have no OMZ. (C) 1999 Elsevier Science Ltd. All rights reserved.

Thistle, D, Levin LA, Gooday AJ, Pfannkuche O, Lambshead PJD.  1999.  Physical reworking by near-bottom flow alters the metazoan meiofauna of Fieberling Guyot (northeast Pacific). Deep-Sea Research Part I-Oceanographic Research Papers. 46:2041-2052.   10.1016/s0967-0637(99)00040-0   AbstractWebsite

Although much of the deep sea is physically tranquil, some regions experience near-bottom flows that rework the surficial sediment. During periods of physical reworking, animals in the reworked layer risk being suspended, which can have both positive and negative effects. Reworking can also change the sediment in ecologically important ways, so the fauna of reworked sites should differ from that of quiescent locations. We combined data from two reworked, bathyal sites on the summit of Fieberling Guyot (32 degrees 27.631'N, 127 degrees 49.489'W; 32 degrees 27.581'N, 127 degrees 47.839'W) and compared the results with those of more tranquil sites. We tested for differences in the following parameters, which seemed likely to be sensitive to the direct or indirect effects of reworking: (1) the vertical distribution of the meiofauna in the sea bed, (2) the relative abundance of surface-living harpacticoids, (3) the proportion of the fauna consisting of interstitial harpacticoids, (4) the ratio of harpacticoids to nematodes. We found that the vertical distributions of harpacticoid copepods, ostracods, and kinorhynchs were deeper on Fieberling. In addition, the relative abundance of surface-living harpacticoids was less, the proportion of interstitial harpacticoids was greater, and the ratio of harpacticoids to nematodes was greater on Fieberling. These differences between Fieberling and the comparison sites suggest that physical reworking affects deep-sea meiofauna and indicate the nature of some of the effects. (C) 1999 Elsevier Science Ltd. AII rights reserved.

Thistle, D, Levin LA.  1998.  The effect of experimentally increased near-bottom flow on metazoan meiofauna at a deep-sea site, with comparison data on macrofauna. Deep-Sea Research Part I-Oceanographic Research Papers. 45:625-+.   10.1016/s0967-0637(97)00101-5   AbstractWebsite

It has been argued that strong near-bottom hows affect macrofauna and meiofauna in the deep sea, but the evidence comes largely from studies that compared sites separated geographically by hundreds to thousands of kilometers and in depth by hundreds of meters. In this paper, the results of the first experimental investigation of the effects of strong near-bottom flow on deep-sea metazoan meiofauna are presented. At a site (32 degrees 27.581' N, 127 degrees 47.839' W) at 583 m depth on the Fieberling Guyot summit plain, the submersible Alvin emplaced weirs designed to increase the near-bottom flow locally. After 6.5 weeks, sediments in the weirs and unmanipulated locations in the vicinity were sampled. The abundances of nematodes, harpacticoid copepods, ostracods, and kinorhynchs, considered collectively and as individual taxa, were significantly lower in the weir samples than in the background samples. Parallel responses were observed in total macrofaunal and mollusk abundances. Proportional declines in kinorhynchs and mollusks were observed as well. These results suggest that strong near-bottom flow can reduce the abundance of meiofauna and macrofauna in the deep sea and alter assemblage composition. (C) 1998 Elsevier Science Ltd. All rights reserved.

Levin, LA, Talley D, Thayer G.  1996.  Succession of macrobenthos in a created salt marsh. Marine Ecology-Progress Series. 141:67-82.   10.3354/meps141067   AbstractWebsite

Early succession of macrofauna was examined over several years in a created Spartina alterniflora marsh located on the Newport River Estuary, North Carolina, USA. Epifauna and infaunal community structure and composition were compared at 2 elevations in plots planted with S. alterniflora, plots left bare of vegetation and vegetated plots in a nearby natural S, alterniflora marsh. No significant successional differences were observed between vegetated and unvegetated sediments in the created marsh. The earliest stages of colonization involved recruitment by opportunistic estuarine polychaetes: Streblospio benedicti, Capitella spp, and Polydora cornuta. Capitella spp. dominated the macrofauna a month after marsh creation, but thereafter S. benedicti was the most abundant species. During the first few years, the artificial marsh retained early successional characteristics, with S, benedicti, Capitella spp. and turbellarians accounting for 75 to 95% of the total macrofauna. Fiddler crabs were common epifaunal colonists. After 4 yr, species richness increased and dominance by the early colonists diminished. Taxa lacking planktonic larvae and swimming adults were particularly slow to recover in the created marsh, but accounted for over 25% of the infauna by Year 4. Oligochaetes, which comprised over 50% of the fauna in the natural marsh, remained absent or rare in the artificial system throughout the study. Infaunal recovery appears to be more rapid in lower than upper marsh elevations. Although macrofaunal densities and species richness of sediments in the lower created marsh came to resemble those of the natural marsh within 6 mo, species composition and faunal feeding modes did not. These observations suggest there may be significant functional differences between young artificial marshes and older natural marshes. Consideration of the timing of marsh creation, marsh configuration, continuity with natural marshes, seeding of taxa with poor dispersal, and attention to species habitat requirements are recommended to accelerate infaunal colonization of created Spartina marshes.

Levin, LA, Huggett CL, Wishner KF.  1991.  Control of deep-sea benthic community structure by oxygen and organic-matter gradients in the eastern Pacific Ocean. Journal of Marine Research. 49:763-800.   10.1357/002224091784995756   AbstractWebsite

At boundaries of oxygen minimum zones (OMZs), bathyal faunas experience steep gradients in oxygen and organic-matter availability. The present study compares changes in microbial, meiofaunal, macrofaunal and megafaunal benthic assemblages along these gradients on Volcano 7, a 2.3-km high seamount in the eastern tropical Pacific. Faunal tolerance to dysaerobic (low oxygen) conditions varies with organism size; microbial and meiofaunal abundances are less affected than macro- and megafaunal abundances. At the exceedingly low concentrations (< 0.1 ml/1) encountered on the upper summit of Volcano 7, oxygen appears to exert primary control over abundance, composition and diversity of macrofauna, overriding other factors such as food availability and sediment grain size. When oxygen concentration is sufficient, food availability in sediments (indicated by the presence of labile material such as chlorophyll a) is highly correlated with meiofaunal and macrofaunal abundance. Four distinct physical zones were identified on Volcano 7: (1) the coarse-grained upper summit zone (730-770 m) where near-bottom oxygen concentrations were usually lowest (often < 0.1 ml/1) and organic-matter (% organic carbon and chlorophyll a) availability was high, (2) the coarse-grained lower summit (770-1000 m) where near-bottom oxygen concentrations were usually slightly higher (0.11 to 0.16 ml/1) and organic-matter availability remained high, (3) the coarse-grained flank (1000-2000 m) where oxygen concentration was intermediate (0.7-0.9 ml/1) and sediment organic-matter content was very low, and (4) the finer-grained base (2000-3500 m) where oxygen values exceeded 2.5 ml/1, sediment organic carbon was moderate, and chlorophyll a was low. Abundances of larger forms (megafauna and macrofauna) were severely reduced on the upper summit, but attained high values (2.25/m2 and 8,457/m2 respectively) just tens of meters below. The smaller forms (bacteria and meiofauna) attained peak abundances on the low-oxygen upper summit, however, abundances of harpacticoid copepods were greatly reduced on the upper and lower summit, presumably due to oxygen limitation. Macrofaunal abundance and diversity patterns along the Volcano 7 oxygen/enrichment gradient resembled those typically observed along shallow-water gradients of organic pollution. Low densities of a few soft-bodied, low-oxygen tolerant species resided on the upper summit, a high-density, low-diversity assemblage inhabited the lower summit, and low-density, high-diversity assemblages occupied the flank and base sediments. The infaunal communities on Volcano 7 support the idea that OMZ boundaries are regions of enhanced biological activity. Modern faunal distributions and biogenic structures at OMZ boundaries may be useful in reconstructing oxygenation histories of ancient marine basins.