Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2011
Carson, HS, Cook GS, Lopez-Duarte PC, Levin LA.  2011.  Evaluating the importance of demographic connectivity in a marine metapopulation. Ecology. 92:1972-1984. AbstractWebsite

Recently researchers have gone to great lengths to measure marine metapopulation connectivity via tagging, genetic, and trace-elemental fingerprinting studies. These empirical estimates of larval dispersal are key to assessing the significance of metapopulation connectivity within a demographic context, but the life-history data required to do this are rarely available. To evaluate the demographic consequences of connectivity we constructed seasonal, size-structured metapopulation matrix models for two species of mytilid mussel in San Diego County, California, USA. The self-recruitment and larval exchange terms were produced from a time series of realized connectivities derived from trace-elemental fingerprinting of larval shells during spring and fall from 2003 to 2008. Both species exhibited a strong seasonal pattern of southward movement of recruits in spring and northward movement in fall. Growth and mortality terms were estimated using mark recapture data from representative sites for each species and subpopulation, and literature estimates of juvenile mortality. Fecundity terms were estimated using county-wide settlement data from 2006-2008; these data reveal peak reproduction and recruitment in fall for Mytilus californianus, and spring for M. galloprovincialis. Elasticity and life-stage simulation analyses were employed to identify the season- and subpopulation-specific vital rates and connectivity terms to which the metapopulation growth rate (lambda) was most sensitive. For both species, metapopulation growth was most sensitive to proportional changes in adult fecundity, survival and growth of juvenile stages, and population connectivity, in order of importance, but relatively insensitive to adult growth or survival. The metapopulation concept was deemed appropriate for both Mytilus species as exchange between the subpopulations was necessary for subpopulation persistence. However, highest metapopulation growth occurred in years when a greater proportion of recruits was retained within the predominant source subpopulation. Despite differences in habitat and planktonic duration, both species exhibited similar overall metapopulation dynamics with respect to key life stages and processes. However, different peak reproductive periods in an environment of seasonal current reversals led to different regional (subpopulation) contributions to metapopulation maintenance; this result emphasizes the importance of connectivity analysis for spatial, management of coastal resources.

2009
Fodrie, FJ, Levin LA, Lucas AJ.  2009.  Use of population fitness to evaluate the nursery function of juvenile habitats. Marine Ecology-Progress Series. 385:39-49.   10.3354/meps08069   AbstractWebsite

Juveniles of many fish and invertebrate species are able to select among a diverse portfolio of nursery habitat alternatives. Environmental heterogeneity among these habitats generates variation in the vital rates of young individuals that may influence overall population dynamics. Therefore, understanding how these habitat options affect population fitness is crucial for identifying habitats that widen bottlenecks in early life histories and promote population persistence. We used cohort analyses and demographic models to explore the population-level consequences of habitat selection by juvenile California halibut Paralichthys californicus in southern California, focusing on population growth rate (lambda) as a measure of fitness. Although alternative juvenile habitats (exposed coast and coastal embayments) could contribute an approximately equal number of recruits to the adult stock, positive overall population growth (lambda > 1) depended critically on the subpopulations of juveniles that utilized coastal embayments (bays, lagoons, and estuaries). Conversely, the juvenile subpopulation along the exposed coast contributed negatively to overall population growth (lambda < 1) in 3 of the 4 years we conducted this study, due to elevated local mortality in that habitat. Life table response experiments confirmed that juvenile growth and survivorship were responsible for differences in lambda, and that nursery habitat choice could be a key contributor toward overall population fitness. Considering nurseries in a demographic source-sink context could aid conservation efforts by allowing identification or prioritization of the juvenile habitats most critical for population persistence.