Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
Neira, C, Levin LA, Mendoza G, Zirino A.  2014.  Alteration of benthic communities associated with copper contamination linked to boat moorings. Marine Ecology-an Evolutionary Perspective. 35:46-66.   10.1111/maec.12054   AbstractWebsite

Although copper (Cu) is an essential element for life, leaching from boat paint can cause excess environmental loading in enclosed marinas. The effects of copper contamination on benthic macrofaunal communities were examined in three San Diego Bay marinas (America's Cup, Harbor Island West and East) in Southern California, USA. The distribution of Cu concentration in sediments exhibited a clear spatial gradient, with hotspots created by the presence of boats, which in two marinas exceeded the effect range medium (ERM). Elevated sediment Cu was associated with differences in benthic assemblages, reduced species richness and enhanced dominance in America's Cup and Harbor Island West, whereas Harbor Island East did not appear to be affected. At sites without boats there were greater abundances of some amphipods such as the species Desdimelita sp., Harpinia sp., Aoroides sp., Corophium sp., Podocerus sp., bivalves such as Lyonsia californica, Musculista senhousia, Macoma sp., and polychaetes such as Diplocirrus sp. In contrast, at sites with boats, densities of Pseudopolydora paucibranchiata, Polydora nuchalis, Euchone limnicola, Exogone lourei, Tubificoides spp. were enhanced. The limited impact on Harbor Island East suggests not only lower Cu input rates and increased water flushing and mixing, but also the presence of adequate defense mechanisms that regulate availability and mitigate toxic impacts. At all three marinas, Cu in tissues of several macrobenthic species exhibited Cu bioaccumulation above levels found in the surrounding environment. The annelids Lumbrineris sp. and Tubificoides spp., and the amphipod Desdimelita sp. contained high levels of Cu, suggesting they function as Cu bioaccumulators. The spionid polychaetes Polydora nuchalis and Pseudopolydora paucibranchiata had much lower Cu concentrations than surrounding sediments, suggesting they function as Cu bioregulators. The macrobenthic invertebrates in San Diego Bay marinas that tolerate Cu pollution (e.g. P.nuchalis, P.paucibranchiata, Euchone limnicola, Typosyllis sp., Tubificoides sp.) may function as indicators of high-Cu conditions, whereas the presence of Cu-sensitive species (e.g. Podocerus sp., Aoroides sp., Harpinia sp., Macoma sp., Lyonsia californica) may indicate healthier conditions (less Cu-stressed). Parallel responses by faunas of Shelter Island Yacht Basin, also in San Diego Bay, suggest potential for development of regional Cu contamination assessment criteria, and call for functional comparisons with other marinas and coastal water bodies.

Neira, C, Mendoza G, Levin LA, Zirino A, Delgadillo-Hinojosa F, Porrachia M, Deheyn DD.  2011.  Macrobenthic community response to copper in Shelter Island Yacht Basin, San Diego Bay, California. Marine Pollution Bulletin. 62:701-717.   10.1016/j.marpolbul.2011.01.027   AbstractWebsite

We examined Cu contamination effects on macrobenthic communities and Cu concentration in invertebrates within Shelter Island Yacht Basin, San Diego Bay, California. Results indicate that at some sites, Cu in sediment has exceeded a threshold for "self defense" mechanisms and highlight the potential negative impacts on benthic faunal communities where Cu accumulates and persists in sediments. At sites with elevated Cu levels in sediment, macrobenthic communities were not only less diverse but also their total biomass and body size (individual biomass) were reduced compared to sites with lower Cu. Cu concentration in tissue varied between species and within the same species, reflecting differing abilities to "regulate" their body load. The spatial complexity of Cu effects in a small marina such as SIYB emphasizes that sediment-quality criteria based solely on laboratory experiments should be used with caution, as they do not necessarily reflect the condition at the community and ecosystem levels. (C) 2011 Elsevier Ltd. All rights reserved.

Neira, C, Delgadillo-Hinojosa F, Zirino A, Mendoza G, Levin LA, Porrachia M, Deheyn DD.  2009.  Spatial distribution of copper in relation to recreational boating in a California shallow-water basin. Chemistry and Ecology. 25:417-433.   10.1080/02757540903334197   AbstractWebsite

The overall effect of the number of boats on the copper (Cu) levels in the water column and sediment, along with their spatial variability within Shelter Island Yacht Basin (SIYB), San Diego Bay, California was examined. We identified a horizontal gradient of increasing dissolved Cu and Cu in sediment from outside to the head of SIYB which was coincident with the increasing number of boats. Spatial models of Cu distribution in water and sediment indicated the presence of 'hotspots' of Cu concentration. From outside to the head of SIYB, dissolved Cu ranged from 1.3 gL-1 to 14.6 gL-1 in surface water, and 2.0 gL-1 to 10.2 gL-1 in bottom water. Cu in sediment exceeded the Effect Range Low of 34mgkg-1 (i.e. where adverse effects to fauna may occur), with a peak concentration of 442mgkg-1 at the head of the basin. Free Cu++ in surface water was several orders of magnitude higher than in sediment porewater. High-resolution data of Cu species together with probability maps presented in this paper will allow managers to easily visualise and localise areas of impaired quality and to prioritise which areas should be targeted to improve Cu-related conditions.