Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
Navarro, MO, Parnell PE, Levin LA.  2018.  Essential market squid (Doryteuthis opalescens) embryo habitat: A baseline for anticipated ocean climate change. Journal of Shellfish Research. 37:601-614.   10.2983/035.037.0313   AbstractWebsite

The market squid Doryteuthis opalescens deposits embryo capsules onto the continental shelf from Baja California to southern Alaska, yet little is known about the environment of embryo habitat. This study provides a baseline of environmental data and insights on factors underlying site selection for embryo deposition off southern California, and defines current essential embryo habitat using (1) remotely operated vehicle-supported surveys of benthos and environmental variables, (2) SCUBA surveys, and (3) bottom measurements of T, S, pH, and O-2. Here, embryo habitat is defined using embryo capsule density, capsule bed area, consistent bed footprint, and association with [O-2] and pH (pCO(2)) on the shelf. Spatial variation in embryo capsule density and location appears dependent on environmental conditions, whereas the temporal pattern of year-round spawning is not. Embryos require [O-2] greater than 160 mu mol and pH(T) greater than 7.8. Temperature does not appear to be limiting (range: 9.9 degrees C-15.5 degrees C). Dense embryo beds were observed infrequently, whereas low-density cryptic aggregations were common. Observations of dense embryo aggregation in response to shoaling of low [O-2] and pH indicate habitat compression. Essential embryo habitat likely expands and contracts in space and time directly with regional occurrence of appropriate O-2 and pH exposure. Embryo habitat will likely be at future risk of compression given secular trends of deoxygenation and acidification within the Southern California Bight. Increasingly localized and dense spawning may become more common, resulting in potentially important changes in market squid ecology and management.

Sato, KN, Powell J, Rudie D, Levin LA.  2018.  Evaluating the promise and pitfalls of a potential climate change-tolerant sea urchin fishery in southern California. Ices Journal of Marine Science. 75:1029-1041.   10.1093/icesjms/fsx225   AbstractWebsite

Marine fishery stakeholders are beginning to consider and implement adaptation strategies in the face of growing consumer demand and potential deleterious climate change impacts such as ocean warming, ocean acidification, and deoxygenation. This study investigates the potential for development of a novel climate change-tolerant sea urchin fishery in southern California based on Strongylocentrotus fragilis (pink sea urchin), a deep-sea species whose peak density was found to coincide with a current trap-based spot prawn fishery (Pandalus platyceros) in the 200-300-m depth range. Here we outline potential criteria for a climate change-tolerant fishery by examining the distribution, life-history attributes, and marketable qualities of S. fragilis in southern California. We provide evidence of seasonality of gonad production and demonstrate that peak gonad production occurs in the winter season. S. fragilis likely spawns in the spring season as evidenced by consistent minimum gonad indices in the spring/summer seasons across 4 years of sampling (2012-2016). The resiliency of S. fragilis to predicted future increases in acidity and decreases in oxygen was supported by high species abundance, albeit reduced relative growth rate estimates at water depths (485-510 m) subject to low oxygen (11.7-16.9 mmol kg similar to 1) and pHTotal (< 7.44), which may provide assurances to stakeholders and managers regarding the suitability of this species for commercial exploitation. Some food quality properties of the S. fragilis roe (e. g. colour, texture) were comparable with those of the commercially exploited shallow-water red sea urchin (Mesocentrotus franciscanus), while other qualities (e. g. 80% reduced gonad size by weight) limit the potential future marketability of S. fragilis. This case study highlights the potential future challenges and drawbacks of climate-tolerant fishery development in an attempt to inform future urchin fishery stakeholders.

Gallo, ND, Victor DG, Levin LA.  2017.  Ocean commitments under the Paris Agreement. Nature Climate Change. 7:833-+.   10.1038/nclimate3422   AbstractWebsite

Under the Paris Agreement nations made pledges known as nationally determined contributions (NDCs), which indicate how national governments are evaluating climate risks and policy opportunities. We find that NDCs reveal important systematic patterns reflecting national interests and capabilities. Because the ocean plays critical roles in climate mitigation and adaptation, we created a quantitative marine focus factor (MFF) to evaluate how governments address marine issues. In contrast to the past, when oceans received minimal attention in climate negotiations, 70% of 161 NDCs we analysed include marine issues. The percentage of the population living in low-lying areas-vulnerable to rising seas-positively influences the MFF, but negotiating group (Annex 1 or small island developing states) is equally important, suggesting political motivations are crucial to NDC development. The analysis reveals gaps between scientific and government attention, including on ocean deoxygenation, which is barely mentioned. Governments display a keen interest in expanding marine research on climate priorities.

Arntz, WE, Gallardo VA, Gutierrez D, Isla E, Levin LA, Mendo J, Neira C, Rowe GT, Tarazona J, Wolff M.  2006.  El NiƱo and similar perturbation effects on the benthos of the Humboldt, California, and Benguela Current upwelling ecosystems. Advances in Geosciences. 6:243-265.: European Geosciences Union, c/o E.O.S.T. 5, rue Rene Descartes Strasbourg Cedex 67084 France, [], [URL:] AbstractWebsite

To a certain degree, Eastern Boundary Current (EBC) ecosystems are similar: Cold bottom water from moderate depths, rich in nutrients, is transported to the euphotic zone by a combination of trade winds, Coriolis force and Ekman transport. The resultant high primary production fuels a rich secondary production in the upper pelagic and nearshore zones, but where O sub(2) exchange is restricted, it creates oxygen minimum zones (OMZs) at shelf and upper slope (Humboldt and Benguela Current) or slope depths (California Current). These hypoxic zones host a specifically adapted, small macro- and meiofauna together with giant sulphur bacteria that use nitrate to oxydise H sub(2)S. In all EBC, small polychaetes, large nematodes and other opportunistic benthic species have adapted to the hypoxic conditions and co-exist with sulphur bacteria, which seem to be particularly dominant off Peru and Chile. However, a massive reduction of macrobenthos occurs in the core of the OMZ. In the Humboldt Current area the OMZ ranges between <100 and about 600 m, with decreasing thickness in a poleward direction. The OMZ merges into better oxygenated zones towards the deep sea, where large cold-water mega- and macrofauna occupy a dominant role as in the nearshore strip. The Benguela Current OMZ has a similar upper limit but remains shallower. It also hosts giant sulphur bacteria but little is known about the benthic fauna. However, sulphur eruptions and intense hypoxia might preclude the coexistence of significant mega- und macrobenthos. Conversely, off North America the upper limit of the OMZ is considerably deeper (e.g., 500-600 m off California and Oregon), and the lower boundary may exceed 1000m. The properties described are valid for very cold and cold (La Nina and "normal") ENSO conditions with effective upwelling of nutrient-rich bottom water. During warm (El Nino) episodes, warm water masses of low oxygen concentration from oceanic and equatorial regions enter the upwelling zones, bringing a variety of (sub)tropical immigrants. The autochthonous benthic fauna emigrates to deeper water or poleward, or suffers mortality. However, some local macrofaunal species experience important population proliferations, presumably due to improved oxygenation (in the southern hemisphere), higher temperature tolerance, reduced competition or the capability to use different food. Both these negative and positive effects of el Nino influence local artisanal fisheries and the livelihood of coastal populations. In the Humboldt Current system the hypoxic seafloor at outer shelf depths receives important flushing from the equatorial zone, causing havoc on the sulphur bacteria mats and immediate recolonisation of the sediments by mega- and macrofauna. Conversely, off California, the intruding equatorial water masses appear to have lower oxygen than ambient waters, and may cause oxygen deficiency at upper slope depths. Effects of this change have not been studied in detail, although shrimp and other taxa appear to alter their distribution on the continental margin. Other properties and reactions of the two Pacific EBC benthic ecosystems to el Nino seem to differ, too, as does the overall impact of major episodes (e.g., 1982/1983(1984) vs. 1997/1998). The relation of the "Benguela Nino" to ENSO seems unclear although many Pacific- Atlantic ocean and atmosphere teleconnections have been described. Warm, low- oxygen equatorial water seems to be transported into the upwelling area by similar mechanisms as in the Pacific, but most major impacts on the eukaryotic biota obviously come from other, independent perturbations such as an extreme eutrophication of the sediments ensuing in sulphidic eruptions and toxic algal blooms. Similarities and differences of the Humboldt and California Current benthic ecosystems are discussed with particular reference to ENSO impacts since 1972/73. Where there are data available, the authors include the Benguela Current ecosystem as another important, non-Pacific EBC, which also suffers from the effects of hypoxia.