Publications

Export 2 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
T
Thurber, AR, Levin LA, Rowden AA, Sommer S, Linke P, Kroger K.  2013.  Microbes, macrofauna, and methane: A novel seep community fueled by aerobic methanotrophy. Limnology and Oceanography. 58:1640-1656.   10.4319/lo.2013.58.5.1640   AbstractWebsite

During the discovery and description of seven New Zealand methane seep sites, an infaunal assemblage dominated by ampharetid polychaetes was found in association with high seabed methane emission. This ampharetid-bed assemblage had a mean density of 57,000 +/- 7800 macrofaunal individuals m(-2) and a maximum wet biomass of 274 g m(-2), both being among the greatest recorded from deep-sea methane seeps. We investigated these questions: Does the species assemblage present within these ampharetid beds form a distinct seep community on the New Zealand margin? and What type of chemoautotrophic microbes fuel this heterotrophic community? Unlike the other macro-infaunal assemblages, the ampharetid-bed assemblage composition was homogeneous, independent of location. Based on a mixing model of species-specific mass and isotopic composition, combined with published respiration measurements, we estimated that this community consumes 29-90 mmol C m(-2) d(-1) of methane-fueled biomass; this is > 290 times the carbon fixed by anaerobic methane oxidizers in these ampharetid beds. A fatty acid biomarker approach supported the finding that this community, unlike those previously known, consumes primarily aerobic methanotrophic bacteria. Due to the novel microbial fueling and high methane flux rates, New Zealand's ampharetid beds provide a model system to study the influence of metazoan grazing on microbially mediated biogeochemical cycles, including those that involve greenhouse gas emissions.

Thurber, AR, Levin LA, Orphan VJ, Marlow JJ.  2012.  Archaea in metazoan diets: implications for food webs and biogeochemical cycling. ISME Journal. 6:1602-1612.   10.1038/ismej.2012.16   AbstractWebsite

Although the importance of trophic linkages, including 'top-down forcing', on energy flow and ecosystem productivity is recognized, the influence of metazoan grazing on Archaea and the biogeochemical processes that they mediate is unknown. Here, we test if: (1) Archaea provide a food source sufficient to allow metazoan fauna to complete their life cycle; (2) neutral lipid biomarkers (including crocetane) can be used to identify Archaea consumers; and (3) archaeal aggregates are a dietary source for methane seep metazoans. In the laboratory, we demonstrated that a dorvilleid polychaete, Ophryotrocha labronica, can complete its life cycle on two strains of Euryarchaeota with the same growth rate as when fed bacterial and eukaryotic food. Archaea were therefore confirmed as a digestible and nutritious food source sufficient to sustain metazoan populations. Both strains of Euryarchaeota used as food sources had unique lipids that were not incorporated into O. labronica tissues. At methane seeps, sulfate-reducing bacteria that form aggregations and live syntrophically with anaerobic-methane oxidizing Archaea contain isotopically and structurally unique fatty acids (FAs). These biomarkers were incorporated into tissues of an endolithofaunal dorvilleid polychaete species from Costa Rica (mean bulk delta C-13 = -92 +/- 4 parts per thousand; polar lipids -116 parts per thousand) documenting consumption of archaeal-bacterial aggregates. FA composition of additional soft-sediment methane seep species from Oregon and California provided evidence that consumption of archaeal-bacterial aggregates is widespread at methane seeps. This work is the first to show that Archaea are consumed by heterotrophic metazoans, a trophic process we coin as 'archivory'. The ISME Journal (2012) 6, 1602-1612; doi:10.1038/ismej.2012.16; published online 8 March 2012