Publications

Export 7 results:
Sort by: Author Title Type [ Year  (Desc)]
2018
Neira, C, Ingels J, Mendoza G, Hernandez-Lopez E, Levin LA.  2018.  Distribution of meiofauna in bathyal sediments influenced by the oxygen minimum zone off Costa Rica. Frontiers in Marine Science. 5   10.3389/fmars.2018.00448   AbstractWebsite

Ocean deoxygenation has become a topic of increasing concern because of its potential impacts on marine ecosystems, including oxygen minimum zone (OMZ) expansion and subsequent benthic effects. We investigated the influence of oxygen concentration and organic matter (OM) availability on metazoan meiofauna within and below an OMZ in bathyal sediments off Costa Rica, testing the hypothesis that oxygen and OM levels are reflected in meiofaunal community structures and distribution. Mean total densities in our sampling cores (400-1800 m water depth) were highest with 3688 ind. 10 cm(-2) at the OMZ core at 400 m water depth, decreasing rapidly downslope. Nematodes were overall dominant, with a maximum of 99.9% in the OMZ core, followed by copepods (13%), nauplii (4.8%), and polychaetes (3%). Relative copepod and nauplii abundance increased consistently with depth and increasing bottom-water O-2. Meiofaunal composition was significantly different among sites, with lower taxonomic diversity at OMZ sites relative to deeper, oxygenated sites. Vertical distribution patterns within sediments showed that in strongly oxygen-depleted sites less meiofauna was concentrated in the surface sediment than at deeper slope sites. Highest meiofaunal abundance and lowest diversity occurred under lowest oxygen and highest pigment levels, whereas highest diversity occurred under highest oxygen-concentrations and low pigments, as well as high quality of sedimentary pigment (chl a/phaeo) and organic carbon (C/N). The lower meiofaunal diversity, and lower structural and trophic complexity, at oxygen-depleted sites raises concerns about changes in the structure and function of benthic marine ecosystems in the face of OMZ expansions.

2015
Nordstrom, MC, Demopoulos AWJ, Whitcraft CR, Rismondo A, McMillan P, Gonzalez JP, Levin LA.  2015.  Food web heterogeneity and succession in created saltmarshes. Journal of Applied Ecology. 52:1343-1354.   10.1111/1365-2664.12473   AbstractWebsite

Ecological restoration must achieve functional as well as structural recovery. Functional metrics for re-establishment of trophic interactions can be used to complement traditional monitoring of structural attributes. In addition, topographic effects on food web structure provide added information within a restoration context; often, created sites may require spatial heterogeneity to effectively match structure and function of natural habitats. We addressed both of these issues in our study of successional development of benthic food web structure, with focus on bottom-up-driven changes in macroinvertebrate consumer assemblages in the saltmarshes of the Venice Lagoon, Italy. We combined quantified estimates of the changing community composition with stable isotope data (C-13:C-12 and N-15:N-14) to compare the general trophic structure between created (2-14years) marshes and reference sites and along topographic elevation gradients within saltmarshes. Macrofaunal invertebrate consumers exhibited local, habitat-specific trophic patterns. Stable isotope-based trophic structure changed with increasing marsh age, in particular with regard to mid-elevation (Salicornia) habitats. In young marshes, the mid-elevation consumer signatures resembled those of unvegetated ponds. The mid-elevation of older and natural marshes had a more distinct Salicornia zone food web, occasionally resembling that of the highest (Sarcocornia-dominated) elevation. In summary, this indicates that primary producers and availability of vascular plant detritus structure consumer trophic interactions and the flow of carbon. Functionally different consumers, subsurface-feeding detritivores (Oligochaeta) and surface grazers (Hydrobia sp.), showed distinct but converging trajectories of isotopic change over time, indicating that successional development may be asymmetric between brown' (detrital) guilds and green' (grazing) guilds in the food web.Synthesis and applications. Created marsh food webs converged into a natural state over about a decade, with successional shifts seen in both consumer community composition and stable isotope space. Strong spatial effects were noted, highlighting the utility of stable isotopes to evaluate functional equivalence in spatially heterogeneous systems. Understanding the recovery of functional properties such as food web support, and their inherent spatial variability, is key to planning and managing successful habitat restoration. Created marsh food webs converged into a natural state over about a decade, with successional shifts seen in both consumer community composition and stable isotope space. Strong spatial effects were noted, highlighting the utility of stable isotopes to evaluate functional equivalence in spatially heterogeneous systems. Understanding the recovery of functional properties such as food web support, and their inherent spatial variability, is key to planning and managing successful habitat restoration.

Maloney, JM, Grupe BM, Pasulka AL, Dawson KS, Case DH, Frieder CA, Levin LA, Driscoll NW.  2015.  Transpressional segment boundaries in strike-slip fault systems offshore southern California: Implications for fluid expulsion and cold seep habitats. Geophysical Research Letters. 42:4080-4088.   10.1002/2015gl063778   AbstractWebsite

The importance of tectonics and fluid flow in controlling cold seep habitats has long been appreciated at convergent margins but remains poorly understood in strike-slip systems. Here we present geophysical, geochemical, and biological data from an active methane seep offshore from Del Mar, California, in the inner California borderlands (ICB). The location of this seep appears controlled by localized transpression associated with a step in the San Diego Trough fault zone and provides an opportunity to examine the interplay between fluid expulsion and restraining step overs along strike-slip fault systems. These segment boundaries may have important controls on seep locations in the ICB and other margins characterized by strike-slip faulting (e.g., Greece, Sea of Marmara, and Caribbean). The strike-slip fault systems offshore southern California appear to have a limited distribution of seep sites compared to a wider distribution at convergent plate boundaries, which may influence seep habitat diversity and connectivity.

2009
Gooday, AJ, Levin LA, da Silva AA, Bett BJ, Cowie GL, Dissard D, Gage JD, Hughes DJ, Jeffreys R, Lamont PA, Larkin KE, Murty SJ, Schumacher S, Whitcraft C, Woulds C.  2009.  Faunal responses to oxygen gradients on the Pakistan margin: A comparison of foraminiferans, macrofauna and megafauna. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 56:488-502.   10.1016/j.dsr2.2008.10.003   AbstractWebsite

The Pakistan Margin is characterised by a strong mid-water oxygen minimum zone (OMZ) that intercepts the seabed at bathyal depths (150-1300 m). We investigated whether faunal abundance and diversity trends were similar among protists (foraminiferans and gromiids), metazoan macrofauna and megafauna along a transect (140-1850 m water depth) across the OMZ during the 2003 intermonsoon (March-May) and late/post-monsoon (August-October) seasons. All groups exhibited some drop in abundance in the OMZ core (250-500 m water depth; O(2): 0.10-0.13 mL L(-1) = 4.46-5.80 mu M) but to differing degrees. Densities of foraminiferans >63 mu m were slightly depressed at 300 m, peaked at 738 m, and were much lower at deeper stations. Foraminiferans >300 mu m were the overwhelmingly dominant macrofaunal organisms in the OMZ core. Macrofaunal metazoans reached maximum densities at 140 m depth, with additional peaks at 850, 940 and 1850 m where foraminiferans were less abundant. The polychaete Linopherus sp. was responsible for a macrofaunal biomass peak at 950 m. Apart from large swimming animals (fish and natant decapods), metazoan megafauna were absent between 300 and 900 m (O(2) <0.14-0.15 mLL(-1) = 6.25-6.69 mu M) but were represented by a huge, ophiuroid-dominated abundance peak at 1000 m (O(2) similar to 0.15-0.18 mLL(-1) = 6.69-8.03 mu M). Gromiid protists were confined largely to depths below 1150 m (O(2) > 0.2 mLL(-1) = 8.92 mu M). The progressively deeper abundance peaks for foraminiferans (> 63 mu m), Linopherus sp. and ophiuroids probably represent lower OMZ boundary edge effects and suggest a link between body size and tolerance of hypoxia. Macro- and megafaunal organisms collected between 800 and 1100 m were dominated by a succession of different taxa, indicating that the lower part of the OMZ is also a region of rapid faunal change. Species diversity was depressed in all groups in the OMZ core, but this was much more pronounced for macrofauna and megafauna than for foraminiferans. Oxygen levels strongly influenced the taxonomic composition of all faunal groups. Calcareous foraminiferans dominated the seasonally and permanently hypoxic sites (136-300 m); agglutinated foraminiferans were relatively more abundant at deeper stations where oxygen concentrations were >0.13 mLL(-1)( = 5.80 mu M). Polychaetes were the main macrofaunal taxon within the OMZ; calcareous macrofauna, and megafauna (molluscs and echinoderms) were rare or absent where oxygen levels were lowest. The rarity of larger animals between 300 and 700 m on the Pakistan Margin, compared with the abundant macrofauna in the OMZ core off Oman, is the most notable contrast between the two sides of the Arabian Sea. This difference probably reflects the slightly higher oxygen levels and better food quality on the western side. (C) 2008 Published by Elsevier Ltd.

2006
Levin, LA, Ziebis W, Mendoza GF, Growney-Cannon V, Walther S.  2006.  Recruitment response of methane-seep macrofauna to sulfide-rich sediments: An in situ experiment. Journal of Experimental Marine Biology and Ecology. 330:132-150.   10.1016/j.jembe.2005.12.022   AbstractWebsite

Hydrodynamically unbiased colonization trays were deployed for 6 months (Oct. 2000 to April 2001) on the northern California margin (Eel R. region; 525 m) to examine macrofaunal colonization rates at methane seeps. The influence of sulfide on recruitment and survival was examined by deploying sediments with and without sulfide added; effect of seep proximity was evaluated by placing trays inside and outside seeps. The trays contained a two-layer system mimicking vesicomyid clam bed habitat geochemistry, with 89 9 mM sulfide in a lower agar layer at the start of the experiment. After 6 month on the seabed, the lower agar layer contained 2-4 mM H2S. We observed rapid macrofaunal colonization equivalent to 50% of initial non-seep ambient densities. There was no difference in total colonizer densities, number of species, or rarefaction diversity among 3 treatments: (1) controls (no sulfide added) placed outside seeps, (2) trays with sulfide added placed outside seeps and (3) trays with sulfide added placed inside seep patches. Colonization trays with sulfide placed at seeps had different species composition from trays without sulfide place outside seeps; there were more amphipods (non-ampeliscid) and cumaceans in the seep/sulfide treatment and more nemerteans, Nephtys cornuta and tanaids in the non-seep/no-sulfide treatment. Outside seeps, annelids comprised <15% of tray colonists; within seep patches, annelids comprised 5 of the top 10 dominant colonizing taxa (24% of the total). The polychaetes Mediomastus sp., Aphelochaeta sp., Paraonidae sp., and Nerillidae sp. exhibited significantly higher densities in sulfide additions. Tanaids, echinoderms, and N. cornuta exhibited sulfide avoidance. At least 6 dorvilleid polychaete species colonized the experiments. Of these, 4 species occurred exclusively in trays with sulfide added and 80% of all dorvilleid individuals were found in trays with sulfide placed inside seep sediments. Counts of large sulfur bacterial filaments were positively correlated with maximum sulfide concentration in each tray, and with proximity of sulfide to the sediment surface. However, total macrofaunal densities were not correlated with tray sulfide concentrations. As a group, tray assemblages achieved some but not all characteristics of ambient seep assemblages after 6-month exposure on the sea floor. Distinctive colonization patterns at methane seeps contribute to the dynamic mosaic of habitat patches that characterize the eastern Pacific continental margin. Overall, proximity of seep habitats had at least as great an influence on macrofaunal colonization as tray sulfide concentrations. Taxa characteristic of seep sediments were more likely to settle into trays placed inside rather than outside seep patches. Whether this is due to limited dispersal ability or local geochemical cues remains to be determined. (C) 2005 Elsevier B.V. All rights reserved.

2004
Gallardo, VA, Palma M, Carrasco FD, Gutierrez D, Levin LA, Canete JI.  2004.  Macrobenthic zonation caused by the oxygen minimum zone on the shelf and slope off central Chile. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 51:2475-2490.   10.1016/j.dsr2.2004.07.028   AbstractWebsite

The relationship between macrobenthic (greater than or equal to 300 mum) zonation and the oxygen minimum zone (OMZ: O(2) < 0.5 ml L(-1)) was studied in shelf and slope sediments (122-840 m depth) off Concepcion Bay, central Chile. Four study sites were sampled during March-April 1999 for abiotic factors, macrofaunal density, biomass, mean individual size, and diversity. Within the OMZ (122-206 m), the macrofaunal density was high (16,478-21,381 individuals m(-2)) and 69-89% of the organisms were soft-bodied. Density was highest (21,381 individuals m(-2)), biomass lowest (16.95 g wet weight m-2), and individual size smallest (0.07 mg C individuals) at the shelf break site (206 m). Polychaete worms made up 71% of the total abundance, crustaceans 16%, and mollusks only 2%. Total abundance beneath the OMZ (mid-slope site, similar to840 m) was 49% crustaceans and 43% polychaetes. Although existing literature originally led to the hypothesis that both diversity and biomass within the OMZ would be lower than beneath the OMZ, in the present study this was only true for diversity. Biomass distribution, on the other hand, was concave along the depth gradient; the highest values were near the upper edge of (122 m) and beneath (840 m) the OMZ. Indices of the macrofaunal community structure varied in relation to bottom-water oxygen concentration, chlorophyll-alpha, phaeopigments, and sulfide concentration, but not in relation to grain size, C, N, mud, porosity, redox potential, a bottom-water temperature. (C) 2004 Published by Elsevier Ltd.

1998
Levin, LA, Gage JD.  1998.  Relationships between oxygen, organic matter and the diversity of bathyal macrofauna. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 45:129-163.   10.1016/s0967-0645(97)00085-4   AbstractWebsite

The relationships of environmental factors with measures of macrobenthic community diversity were examined for the total fauna, and for polychaetes only, from 40 bathyal stations in the North Atlantic, eastern Pacific and Indian Oceans (154-3400 m). Stepwise multiple regression revealed that depth, latitude, sediment organic-carbon content and bottom-water oxygen concentration are significant factors that together explained 52-87% of the variation in macrobenthic species richness (E[s(100)]), the Shannon-Wiener index (H'), dominance (D), and evenness (J'). Percent sand and percent clay were not significant factors. After removal of depth and latitudinal effects, oxygen and organic-carbon concentrations combined accounted for 47, 67, 52 and 32% of residual variation in macrobenthic E(s(100)), H', D, and J', respectively. Organic carbon exhibited a stronger relationship than oxygen to measures of community evenness, and appeared to have more explanatory power for polychaetes than total macrobenthos. When only stations with oxygen < 1mll(-1) were considered, oxygen concentration became the dominant parameter after depth. Results suggest existence of an oxygen threshold ( < 0.45 mi l(-1)), above which oxygen effects on macrobenthic diversity are minor relative to organic matter influence, but below which oxygen becomes a critical factor. Our regression results lead us to hypothesize that for bathyal faunas, oxygen at low concentrations has more influence on species richness, while organic carbon regulates the distribution of individuals among species (community evenness). Examination of rarefaction curves for Indo-Pacific stations reveals that total macrobenthos, polychaetes, crustaceans and molluscs all exhibit reduced species richness within oxygen minimum zones (OMZs). However, representation under conditions of hypoxia varies among taxa, with polychaetes being most tolerant. Molluscs and crustaceans often (but not always) exhibit few individuals and species in OMZs, and sometimes disappear altogether, contributing to reduced macrobenthic diversity and elevated dominance in these settings. The linear negative relationship observed between bathyal species richness and sediment organic-carbon content (used here as a proxy for food availability) may represent the right side (more productive half) of the hump-shaped, diversity-productivity curve reported in other systems. These analyses suggest then are potentially strong influences of organic matter and oxygen on the diversity and composition of bathyal macrobenthos, especially in the Indo-Pacific Ocean. (C) 1998 Elsevier Science Ltd. All rights reserved.