Export 8 results:
Sort by: Author Title Type [ Year  (Desc)]
Moseman-Valtierra, S, Levin LA, Martin RM.  2016.  Anthropogenic impacts on nitrogen fixation rates between restored and natural Mediterranean salt marshes. Marine Ecology-an Evolutionary Perspective. 37:370-379.   10.1111/maec.12289   AbstractWebsite

To test the effects of site and successional stage on nitrogen fixation rates in salt marshes of the Venice Lagoon, Italy, acetylene reduction assays were performed with Salicornia veneta- and Spartina townsendii-vegetated sediments from three restored (6-14years) and two natural marshes. Average nitrogen fixation (acetylene reduction) rates ranged from 31 to 343 mu mol C2H4.m(-2.)h(-1) among all marshes, with the greatest average rates being from one natural marsh (Tezze Fonde). These high rates are up to six times greater than those reported from Southern California Spartina marshes of similar Mediterranean climate, but substantially lower than those found in moister climates of the Atlantic US coast. Nitrogen fixation rates did not consistently vary between natural and restored marshes within a site (Fossei Est, Tezze Fonde, Cenesa) but were negatively related to assayed plant biomass within the acetylene reduction samples collected among all marshes. Highest nitrogen fixation rates were found at Tezze Fonde, the location closest to the city of Venice, in both natural and restored marshes, suggesting possible site-specific impacts of anthropogenic stress on marsh succession.

Neira, C, Levin LA, Grosholz ED, Mendoza G.  2007.  Influence of invasive Spartina growth stages on associated macrofaunal communities. Biological Invasions. 9:975-993.   10.1007/s10530-007-9097-x   AbstractWebsite

In coastal wetlands, invasive plants often act as ecosystem engineers altering flow, light and sediments which, in turn, can affect benthic animal communities. However, the degree of influence of the engineer will vary significantly as it grows, matures and senesces, and surprisingly little is known about how the influence of an ecosystem engineer varies with ontogeny. We address this issue on the tidal flats of San Francisco Bay where hybrid Spartina (foliosa x alterniflora) invaded 30 years ago. The invasion has altered the physico-chemical properties of the sediment habitat, which we predicted should cause changes in macrofaunal community structure and function. Through mensurative and manipulative approaches we investigated the influence of different growth stages of hybrid Spartina on macrobenthos and the underlying mechanisms. Cross-elevation sampling transects were established covering 5 zones (or stages) of the invasion, running from the tidal flat (pre-invasion) to an unvegetated dieback zone. Additionally, we experimentally removed aboveground plant structure in the mature (inner) marsh to mimic the 'unvegetated areas'. Our results revealed four distinct faunal assemblages, which reflected Spartina-induced changes in the corresponding habitat properties along an elevation gradient: a pre-invaded tidal flat, a leading edge of immature invasion, a center of mature invasion, and a senescing dieback area. These stages of hybrid Spartina invasion were accompanied by a substantial reduction in macrofaunal species richness and an increase in dominance, as well as a strong shift in feeding modes, from surface microalgal feeders to subsurface detritus/Spartina feeders (mainly tubificid oligochaetes and capitellid polychaetes). Knowledge of the varying influence of plant invaders on the sediment ecosystem during different phases of invasion is critical for management of coastal wetlands.

Moseman, SM, Levin LA, Currin C, Forder C.  2004.  Colonization, succession, and nutrition of macrobenthic assemblages in a restored wetland at Tijuana Estuary, California. Estuarine Coastal and Shelf Science. 60:755-770.   10.1016/j.ecss.2004.03.013   AbstractWebsite

Modes of colonization, the successional trajectory, and trophic recovery of a macrofaunal community were analyzed over 19 months in the Friendship marsh, a 20-acre restored wetland in Tijuana Estuary, California. Traditional techniques for quantifying macrofaunal communities were combined with emerging stable isotopic approaches for evaluation of trophic recovery, making comparisons with a nearby natural Spartina foliosa habitat. Life history-based predictions successfully identified major colonization modes, although most taxa employed a variety of tactics for colonizing the restored marsh. The presence of S.foliosa did not seem to affect macrofaunal colonization or succession at the scale of this study. However, soil organic matter content in the restored marsh was positively correlated with insect densities, and high initial salinities may have limited the success of early colonists. Total macrofaunal densities recovered to natural marsh levels after 14 months and diversity, measured as species richness and the Shannon index (H'), was comparable to the natural marsh by 19 months. Some compositional disparities between the natural and created communities persisted after 19 months, including lower percentages of surface-feeding polychaetes (Polydora spp.) and higher percentages of dipteran insects and turbellarians in the Friendship marsh. As surficial structural similarity of infaunal communities between the Friendship and natural habitat was achieved, isotopic analyses revealed a simultaneous trajectory towards recovery of trophic structure. Enriched delta(13)C signatures of benthic microalgae and infauna, observed in the restored marsh shortly after establishment compared to natural Spartina habitat, recovered after 19 months. However, the depletion in delta(15)N signatures of macrofauna in the Friendship marsh indicated consumption of microalgae, particularly nitrogen-fixing cyanobacteria, while macroalgae and Spartina made a larger contribution to macrofaunal diets in the natural habitat. Future successional studies must continue to develop and employ novel combinations of techniques for evaluating structural and functional recovery of disturbed and created habitats. (C) 2004 Elsevier Ltd. All rights reserved.

Levin, LA, Talley TS.  2002.  Natural and manipulated sources of heterogeneity controlling early faunal development of a salt marsh. Ecological Applications. 12:1785-1802.   10.2307/3099938   AbstractWebsite

Ecosystem recovery following wetland restoration offers exceptional opportunities to study system structure, function, and successional processes in salt marshes. This study used observations of natural variation and large-scale manipulative experiments to test the influence of vascular vegetation and soil organic matter on the rate and trajectory of macrofaunal recovery in a southern California created salt marsh, the Crown Point Mitigation Site. During the first three years following marsh establishment, macrofaunal density and species richness recovered rapidly within the Spartina foliosa (cordgrass) zone; densities in the created marsh were 50% of those in the natural marsh after 16 mo and 97% after 28 mo. However, the early successional assemblage had a lower proportion of tubificid and enchytraeid oligochaetes, and a higher proportion of chironomids and other insect larvae than did the mature natural marsh. Most of the colonizers arrived by rafting on sea grass and algae rather than by larval dispersal. Initial planting of S. foliosa had no influence on macrofaunal recovery, perhaps because of variable transplant survival. However, subsequently, both positive and negative correlations were observed between densities of some macrofaunal taxa and shoot densities of S. foliosa or Salicornia spp. (pickleweed). Salinity and measures of soil organics (belowground biomass, combustible organic matter, and chlorophyll a) also were correlated with macrofaunal densities and taxon richness. Of foul added soil amendments (kelp, alfalfa, peat, and Milorganite), Milorganite (a sewage product) and kelp both promoted macrofaunal colonization during year 1, but effects were short lived. The most significant sources of heterogeneity in the recovering marsh were associated with site history and climate variation. Faunal recovery was most rapid in highly localized, organic-rich marsh sediments that were remnants of the historical wetland. Elevated sea level during the 1998 El Nino corresponded with similarity of macrofaunal communities in the created and natural marshes. The large spatial scale and multi-year duration of this study revealed that natural sources of spatial and temporal heterogeneity may exert stronger influence on faunal succession in California wetlands than manipulation of vegetation or soil properties.

Ewel, KC, Cressa C, Kneib RT, Lake PS, Levin LA, Palmer MA, Snelgrove P, Wall DH.  2001.  Managing critical transition zones. Ecosystems. 4:452-460.   10.1007/s10021-001-0106-0   AbstractWebsite

Ecosystems that function as critical transition zones (CTZs) among terrestrial, freshwater, and marine habitats are closely connected to the ecosystems adjacent to them and are characterized by a rapid flux of materials and organisms. CTZs play various roles, including mediating water flows, accumulating sediments and organic matter, processing nutrients, and providing opportunities for recreation. They are particularly difficult to manage because they tend to be small, albeit important, components of large watersheds, and managers may not have control over the entire landscape. Moreover, they are often the focus of intensive human activity. Consequently, CTZs are critically important zones, and their preservation and protection are likely to require unique collaboration among scientists, managers, and stakeholders. Scientists can learn a great deal from the study of these ecosystems, taking advantage of small size and the importance of fluxes, but a good understanding of adaptive management strategies is needed to establish a dialogue with managers and stakeholders on technical and management issues. An understanding of risk analysis is also important to help set meaningful goals and establish logical strategies that include all of the interested parties. Successful restoration of a CTZ is the best test of the quality of knowledge about its structure and function. Much has already been learned about coastal CTZs through restoration projects, and the large number of such projects involving riparian CTZs in particular suggests that there is considerable opportunity for fruitful collaborations between scientists and managers.

Talley, TS, Levin LA.  1999.  Macrofaunal succession and community structure in Salicornia marshes of southern California. Estuarine Coastal and Shelf Science. 49:713-731.   10.1006/ecss.1999.0553   AbstractWebsite

Lack of basic understanding of ecosystem structure and function forms a major impediment to successful conservation of coastal ecosystems. This paper provides a description of the fauna and examines faunal succession in Salicornia-vegetated sediments of southern California. Environmental attributes (vegetation and sediment properties) and macrofaunal (animals greater than or equal to 0.3 mm) community structure were examined in sediments of five natural, southern California Salicornia spp. marshes (Tijuana Estuary, San Diego Bay, Mission Bay, Upper Newport Bay and Anaheim Bay) and in created Salicornia marshes 16 months to 10 years in age, located within four of the bays. Oligochaetes and insects were the dominant taxa in both natural (71 to 98% of total fauna) and created (91 to 97%) marshes. In San Diego, Newport and Anaheim Bays, macrofaunal densities were generally higher in the created marshes (88 000 to 290 000 ind m(-2)) than in their natural counterparts (26 000 to 50 000 ind m(-2)). In the youngest system, Mission Bay, the reverse was true (natural: 113 000 vs created: 28 000 ind m-2). Similar species numbers were recorded from the created and adjacent natural marshes. Insects, especially chironomids, dolichopodids, and heleids, as well as the naidid oligochaete, Paranais litoralis, characterize early successional stages. Enchytraeid and tubificid oligochaetes reflect later succession evident in natural and older created marshes. Sediment organic matter (both combustible and below-ground plant biomass) was the environmental variable most commonly associated with densities of various macrofaunal taxa. These relationships were generally negative in the natural marshes and positive in the created marshes. Within-bay comparisons of macrofauna from natural Salicornia- vs Spartina-vegetated habitat in San Diego and Mission Bays revealed lower macrofaunal density (San Diego Bay only), proportionally fewer oligochaetes and more insects, and no differences in species richness in the Salicornia habitat. The oldest created Salicornia marsh (San Diego Bay) exhibited an assemblage intermediate in composition between those of the natural Salicornia- and Spartina-vegetated marshes. These results suggest: (a) faunal recovery following Salicornia marsh creation can require 10 or more years, (b) high macrofaunal variability among bays requires marsh creation reference site selection from within the same bay, and (c) Spartina-based research should not be used for Salicornia marsh management decisions. (C) 1999 Academic Press.

Levin, LA, Dibacco C.  1995.  Influence of sediment transport on short-term recolonization by seamount infauna. Marine Ecology-Progress Series. 123:163-175.   10.3354/meps123163   AbstractWebsite

Rates and mechanisms of infaunal recolonization in contrasting sediment transport regimes were examined by deploying hydrodynamically unbiased colonization trays at 2 sites similar to 2 km apart on the flat summit plain of Fieberling Guyot in the eastern Pacific Ocean. Both study sites experienced strong bottom currents and high shear velocity (u* exceeding 1.0 cm s(-1) daily). Macrofaunal recolonization of defaunated sediments on Fieberling Guyot was slow relative to observations in shallow-water sediments, but rapid compared to other unenriched deep-sea treatments. Microbial colonization was slower but macrofaunal colonization was faster at White Sand Swale (WSS, 585 m), where rippled foraminiferal sands migrate daily, than at Sea Pen Rim (SPR, 635 m), where the basaltic sands move infrequently. Total densities of macrofaunal colonizers at WSS were 31 and 75% of ambient after 7 wk and 6.4 mo, respectively; at SPR they were 6 and 49% of ambient, respectively. Over 3/4 of the colonists were polychaetes (predominantly hesionids and dorvilleids) and aplacophoran molluscs. Species richness of colonizers was comparable at SPR and WSS and did not differ substantially from ambient. Most of the species (91%) and individuals (95%) recovered in colonization trays were taxa present in background cores. However, only 25% of the taxa colonizing tray sediments occurred in trays at both WSS and SPR. Sessile species, carnivores and surface feeders were initially slow to appear in colonization trays, but after 6.4 mo, colonizer feeding modes, life habits and mobility patterns mirrored those in ambient sediments at WSS and SPR. Defaunated sediments were colonized by larvae, juveniles and adults at both sites. These experiments provide the first observations of infaunal colonization on seamounts, and in deep, high-energy settings. Passive bedload transport appears to be a dominant colonization mechanism in unstable foraminiferal sands at WSS. Based on the rapid recovery of infauna in trays and low diversity at WSS, we infer that disturbance is a natural feature of this site and that the ambient fauna of WSS retains features of early succession. Infaunal colonization is slower in the stable substrate at SPR, where physical disturbance may occur much less frequently.

Schaff, TR, Levin LA.  1994.  Spatial heterogeneity of benthos associated with biogenic structures on the North Carolina continental slope. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 41:901-&.   10.1016/0967-0645(94)90053-1   AbstractWebsite

The objective of this study was to determine if biogenic features such as mounds, pits and tubes produce small-scale (0.1-100 m) spatial heterogeneity in macrofaunal community structure on the continental slope off North Carolina at 850 m. Macrofaunal and microbial communities associated with sediment mounds, pits and level areas were compared off Cape Lookout, North Carolina. No significant differences were found in sediment microbial counts or total macrofaunal distributions. One paraonid polychaete (Levensenia gracilis) was more abundant in pits than in the other samples, and infaunal anemones exhibited depressed densities in sediment mounds. At a second site, off Cape Hatteras, North Carolina, infaunal heterogeneity associated with the tube-building foraminiferan Bathysiphon filiformis was examined by comparing an area with high tube densities (93.8 m(-2)) with an area 100 m away without tubes. No significant differences were found in the distribution and abundances of bacteria between the two areas. The only significant difference found in infaunal densities was the presence of high numbers of reproductive oligochaetes in the 5-10 cm fraction beneath tube beds. One terebellid polychaete species (Nicolea sp.), which lives exclusively on B. filiformis tubes, was absent in the non-tube area. With a few exceptions, the biogenic structures examined at these two sites appeared to exert only minor influence on macrofaunal or microbial community structure. Within each site, slope assemblages examined in this study appeared to be homogeneous on the small scales examined.