Publications

Export 59 results:
Sort by: Author Title Type [ Year  (Asc)]
1982
Tegner, MJ, Levin LA.  1982.  Do sea urchins and abalones compete in California kelp forest communities? Echinoderms, proceedings of the International Conference, Tampa Bay. ( Lawrence JM, Ed.).:265-271., RotterdamSalem, NH: A.A. Balkema ;Distributed in USA & Canada by MBS Abstract
n/a
1983
Tegner, MJ, Levin LA.  1983.  Spiny lobsters and sea urchins: Analysis of a predator-prey interaction. Journal of Experimental Marine Biology and Ecology. 73:125-150.   10.1016/0022-0981(83)90079-5   AbstractWebsite

Spiny lobsters, Panulirus interruptus (Randall), are important predators of two species of sea urchins, Strongylocentrotus franciscanus (A. Agassiz) and S. purpuratus (Stimpson), which are major herbivores in southern California kelp forest communities. Aquarium experiments indicate that spiny lobsters strongly prefer S. purpuratus over S. franciscanus of comparable test diameter, probably accounting for the higher number of S. purpuratus mortalities observed in the field. Juvenile S. franciscanus (< 60 mm test diameter, TD) are preferred over larger conspecifics, but the smallest S. franciscanus (< 30 mm TD) are protected by association with the adult urchin spine canopy. Mid-sized S. franciscanus too large to fit under the spine canopy are subject to intense predation. All sizes of P. interruptus tested showed a notable reluctance to attack large S. franciscanus (> 90 mm TD) when offered a range of sizes, although the larger lobsters are capable of handling the largest urchins. Relative movement, spine length, test thickness, and gonad weights of sea urchins were examined to evaluate the factors affecting the lobsters' choice of prey, and behavioral responses to lobsters were assessed to determine urchin availability to these predators. The handling problems associated with the long spines of larger S. franciscanus appear to be the major considerations in prey choice despite the much greater potential energy gain from these urchins. Thus predation by spiny lobsters appears to be sufficient to explain the bimodal size-frequency distribution typical of S. franciscanus populations in areas where these predators are common. Heavy fishing pressure on spiny lobsters during this century probably resulted in the release of sea urchin populations and contributed to episodes of destructive urchin grazing observed in the 1950's and subsequent years.

1986
Levin, LA, Demaster DJ, McCann LD, Thomas CL.  1986.  Effects of giant protozoans (Class Xenophyophorea) on deep-seamount benthos. Marine Ecology-Progress Series. 29:99-104.   10.3354/meps029099   AbstractWebsite

Biogenic sediment structures have been proposed to enhance diversity in deep-sea sediments. To evaluate this hypothesis we examined the influence of xenophyophores, giant sediment-agglutinating protozoans, on the structure of metazoan communities inhabiting sediments of deep (1000 to 3300 m) seamounts in the eastern Pacific Ocean. Xenophyophores provided habitat for 16 major metazoan taxa. Sediments immediately surrounding xenophyophores exhibited elevated faunal densities and species richness relative to control sediments collected 1 m from the tests. Amphipods were exclusively associated with the protozoan tests or sediments beneath them. Crustaceans, molluscs, and echinoderms exhibited enhanced infaunal densities in the presence of xenophyophores but polychaetes did not. Both horizontal and vertical distributions of infauna appear to be influenced by these protozoans. 234Th measurements suggest that xenophyophores and their associated fauna increase the particle flux of fine-grained material to the seabed and enhance subsurface mixing on a 100 d time scale. We propose that xenophyophores alter hydrodynamic conditions and provide deep-sea metazoans with substrate, food, and refuge. The resulting habitat heterogeneity may contribute to maintenance of high benthic diversity.

1988
Levin, LA, Thomas CL.  1988.  The ecology of xenophyophores (Protista) on eastern Pacific seamounts. Deep-Sea Research Part a-Oceanographic Research Papers. 35:2003-2027.   10.1016/0198-0149(88)90122-7   AbstractWebsite

Large, agglutinating protozoans of the class Xenophyophorea are the dominant epifaunal organisms on soft and hard substrates of many bathyal seamounts in the eastern Pacific Ocean off Mexico. Observations made with the submersible Alvin and remotely towed camera sleds on 17 seamounts at 31°, 20°, 13° and 10°N revealed more than ten distinct xenophyophore test morphologies. Most of these appear to represent previously undescribed species. Reticulate forms are numerically dominant at 20°, 13° and 10°N. Xenophyophore abundances increase with decreasing latitude, being rare at 30°N, present at densities of 0.1–1.0 m−2 at 20° and 13°N and often exceeding 1.0 m−2 at 10°N, occasionally reaching 10–18 m−2. Highest concentrations are observed on caldera floors near the base of steep caldera walls, at depths between 1700 and 2500 m. Most individuals select sand-size pelagic foraminiferan tests (63–500 μm) and exclude pebble, silt and clay-size particles for test construction.Xenophyophore on seamounts modify the structure of metazoan communities and may play a role in maintenance of infaunal diversity. Twenty-seven xenophyophore tests were found to provide habitat for 16 major macrofaunal taxa (152 individuals) and three meiofaunal taxa (333 individuals). The presence of xenophyophores also enhances the abundance of isopods, tanaids, ophiuroids, nematodes and harpacticoid copepods dwelling in sediments surrounding the tests. Mobile megafauna are attracted to sediment beneath and adjacent to xenophyophores. We suggest that xenophyophores, which are abundant on many topographic features in deep water (e.g. guyots, trenches, canyons and continental slopes), are a functionally important component of deep-sea benthic communities and require further autecological and synecological investigation.

1989
Levin, LA, Thomas CL.  1989.  The influence of hydrodynamic regime on infaunal assemblages inhabiting carbonate sediments on central Pacific seamounts. Deep-Sea Research Part a-Oceanographic Research Papers. 36:1897-&.   10.1016/0198-0149(89)90117-9   AbstractWebsite

We investigated the following hypotheses for deep seamounts in the central Pacific Ocean: (1) infaunal and microbial abundances are elevated in regions of current intensification, (2) infaunal lifestyles reflect variation in hydrodynamic conditions and (3) bioturbation is more intense in high-energy regimes. Our studies were carried out at three sites: the northwest perimeter of the Horizon Guyot sediment cap (1840 m), which is characterized by strong bottom currents and rippled foraminiferan sands, and the central summits of Horizon Guyot (1480 m) and Magellan Rise (3150 m), whose sediments are unrippled and finer grained. Contrary to our first hypothesis, the high-energy, Horizon perimeter sediments exhibited lower biological activity than the summit sites, as reflected in lower organic nitrogen (0.011% vs. 0.015–0.017%), higher C/N ratios (19 vs 11), lower bacterial counts (1.21 vs 2.03−2.15 × 108ml−1) and lower macrofaunal abundances (255 vs 388–829 m−2). Sediment organic carbon values (0.14–0.19%) and meiofaunal abundances (2866–5150 m−2) did not differ significantly among the three sites.Infaunal life habits varied among sites but sediment mixing did not. Macrofauna were found deeper in rippled perimeter sediments than in the cap sediments. Sessility and surface-feeding modes dominated among polychaetes at the higher-energy Horizon perimeter, while motility and subsurface feeding were common in the quieter, finer-grained regimes. Significant sediment mixing takes place on 100-year time scales a all three sites, probably a result of large, infaunal bioturbators at the cap sites and physical sediment instability at the perimeter site. Excess 210Pb exhibited moderately high inventories (38–59 dpm cm−2) and deep penetration (15 cm). Estimated mixing coefficients (Db) ranged from 0.6 to 3.0 cm2y−1 at the three sites. Our findings indicate that hydrodynamic differences can lead to greater variation in sediment and faunal characteristics on a single seamount than are found in similar regimes on different seamounts.Comparison of the Horizon Guyot and Magellan Rise data to comparable data from eastern Pacific seamounts, reveals lower organic carbon content, microbial abundance, macrofaunal densities, and subsurface deposit feeder representation, in central than eastern Pacific seamount sediments.

Kayen, RE, Schwab WC, Lee HJ, Torresan ME, Hein JR, Quinterno PJ, Levin LA.  1989.  Morphology of sea-floor landslides on Horizon Guyot: application of steady-state geotechnical analysis. Deep-Sea Research Part a-Oceanographic Research Papers. 36:1817-1839.   10.1016/0198-0149(89)90114-3   AbstractWebsite

Mass movement and erosion have been identified on the pelagic sediment cap of Horizon Guyot, a seamount in the Mid-Pacific Mountains. Trends in the size, shape and preservation of bedforms and sediment textural trends on the pelagic cap indicate that bottom-current-generated sediment transport direction is upslope. Slumping of the sediment cap occurred on and that the net bedload transport direction is upslope. Slumping of the sediment cap occurred on the northwest side of the guyot on a 1.6° to 2.0° slope in the zone of enhanced bottom-current activity. Submersible investigations of these slump blocks show them to be discrete and to have a relief of 6–15 m, with nodular chert beds cropping out along the headwall of individual rotated blocks. An evaluation of the stability of the sediment cap suggests that the combination of the current-induced beveling of the sea floor and infrequent earthquake loading accompanied by cyclic strength reduction is responsible for the initiation of slumps. The sediment in the area of slumping moved short distances in relatively coherent masses, whereas sediment that has moved beyond the summit cap perimeter has fully mobilized into sediment gravity flows and traveled large distances. A steady-state geotechnical analysis of Horizon Guyot sediment indicates the predisposition of deeply buried sediment towards disintegrative flow failure on appropriately steep slopes. Thus, slope failure in this deeper zone would include large amounts of internal deformation. However, gravitational stress in the near-surface sediment of the summit cap (sub-bottom depth< 14 m) is insufficient to maintain downslope movement after initial failure occurs. The predicted morphology of coherent slump blocks displaced and rafted upon a weakened zone at depth corresponds well with seismic-reflection data and submersible observations.

1991
Levin, LA, McCann LD, Thomas CL.  1991.  The ecology of polychaetes on deep seamounts in the eastern Pacific Ocean. Ophelia. :467-476. AbstractWebsite

Polychaetes were collected by the submersible ALVIN on 18 deep (788-3,353 m) seamounts in the eastern Pacific Ocean at 10-degrees, 13-degrees, 20-degrees and 30-degrees N off western Mexico. Polychaetes comprised 57.7% of all macrofauna collected. Average density over all locations was 942 polychaetes/m2. Thirty-eight families were represented among the 1,422 infaunal polychaetes collected. Five families, the Paraonidae, Cirratulidae, Syllidae, Ampharetidae, and Sabellidae, attained average densities > 1 individual/196 cm2 core. We evaluated effects of latitude, local setting, depth, and substrate on polychaete abundance, taxonomic composition, and lifestyles. Unusually high polychaete densities (7,194/m2) and low diversities were observed in a shallow caldera (788 m) at 13-degrees N. Excluding this site, the latitude exhibiting the highest polychaete densities (xBAR = 939/m2) was 10-degrees N. Of the seven settings examined, pit craters (within seamount calderas) supported the highest densities (xBAR = 1031/m2), and hydrothermal oxide fields and seamount bases exhibited the lowest polychaete densities (xBAR = 576-612/m2). Rippled foraminiferal sands on volcano summits supported large numbers of filter feeders, particularly sabellids. Regressions of total polychaete abundance on depth and on percent sand were not significant. Large, epifaunal, sediment-agglutinating protozoans (Phylum Sarcodina: Class Xenophyophorea) provided habitat for 34 polychaete species. Polychaete abundance and family composition were generally similar to those reported for other nearshore, deep-sea environments at comparable depths. With the exception of the shallowest site, species richness was typically high.

1992
Gooday, AJ, Levin LA, Thomas CL, Hecker B.  1992.  The distribution and ecology of Bathysiphon filiformis sars and B. major de folin (Protista, Foraminiferida) on the continental slope off North Carolina. Journal of Foraminiferal Research. 22:129-146. AbstractWebsite

Two large species of the agglutinated foraminifera genus Bathysiphon are common in samples and photographs from bathyal depths on the North Carolina continental slope: B. filiformis off Cape Hatteras (588-930 m bathymetric depth) and B. major off Cape Lookout (850-1950 m depth). The sampling area, and particularly the 850 m station where B. filiformis is abundant (mean densities of 59-154 per m2), is believed to receive large inputs of organic material from various sources. This is consistent with the previously observed occurrence of large Bathysiphon species in regions of high food supply. Ten camera sled transects across the eastern U.S. continental slope between 32-degrees-N and 41-degrees-N emphasize the abundance of B. filiformis in the Cape Hatteras area compared with its rarity or absence elsewhere along the continental slope. Box cores, bottom photographs, and direct submersible observations indicate that B. filiformis tubes project above the sediment in an arcuate curve with only the lower 1 cm or so buried. Bathysiphon major adopts a similar orientation but has a greater proportion (50-80%) of the tube buried. The voluminous, dense, granular protoplasm of both species contains biogenic particles (including diatoms, in B. filiformis only), dinoflagellate cysts, fungal remains, pollen grains, tintinnid loricae, polychaete jaws and setae, benthic foraminiferal tests, and fish tooth fragments), suggesting that they feed mainly on material derived from the sediment surface. Submersible observations indicate that B. filiformis is patchily distributed at 100 m scales. Smaller scale dispersion patterns (analyzed from photographs) are generally random but with a tendency to be aggregated at lower densities and uniform at higher densities. A variety of metazoans and foraminifers live epifaunally on the outer surfaces of B. filiformis tubes. The most frequently occurring metazoans were larvae and juveniles of an unidentified gastropod and a tubiculous terebellid polychaete Nicolea sp. The most common epifaunal foraminifers were Tritaxis conica and Trochammina sp. Tubes of B. major, however, are virtually devoid of epifauna. Our results support the view that large, agglutinated rhizopod tests may influence the structure of deep-water benthic communities. However, in the case of Bathysiphon on the North Carolina continental slope, the effect appears limited to taxa directly associated with the foraminiferal tubes.

1996
Levin, LA, Talley D, Thayer G.  1996.  Succession of macrobenthos in a created salt marsh. Marine Ecology-Progress Series. 141:67-82.   10.3354/meps141067   AbstractWebsite

Early succession of macrofauna was examined over several years in a created Spartina alterniflora marsh located on the Newport River Estuary, North Carolina, USA. Epifauna and infaunal community structure and composition were compared at 2 elevations in plots planted with S. alterniflora, plots left bare of vegetation and vegetated plots in a nearby natural S, alterniflora marsh. No significant successional differences were observed between vegetated and unvegetated sediments in the created marsh. The earliest stages of colonization involved recruitment by opportunistic estuarine polychaetes: Streblospio benedicti, Capitella spp, and Polydora cornuta. Capitella spp. dominated the macrofauna a month after marsh creation, but thereafter S. benedicti was the most abundant species. During the first few years, the artificial marsh retained early successional characteristics, with S, benedicti, Capitella spp. and turbellarians accounting for 75 to 95% of the total macrofauna. Fiddler crabs were common epifaunal colonists. After 4 yr, species richness increased and dominance by the early colonists diminished. Taxa lacking planktonic larvae and swimming adults were particularly slow to recover in the created marsh, but accounted for over 25% of the infauna by Year 4. Oligochaetes, which comprised over 50% of the fauna in the natural marsh, remained absent or rare in the artificial system throughout the study. Infaunal recovery appears to be more rapid in lower than upper marsh elevations. Although macrofaunal densities and species richness of sediments in the lower created marsh came to resemble those of the natural marsh within 6 mo, species composition and faunal feeding modes did not. These observations suggest there may be significant functional differences between young artificial marshes and older natural marshes. Consideration of the timing of marsh creation, marsh configuration, continuity with natural marshes, seeding of taxa with poor dispersal, and attention to species habitat requirements are recommended to accelerate infaunal colonization of created Spartina marshes.

1997
Levin, L, Blair N, DeMaster D, Plaia G, Fornes W, Martin C, Thomas C.  1997.  Rapid subduction of organic matter by maldanid polychaetes on the North Carolina slope. Journal of Marine Research. 55:595-611.   10.1357/0022240973224337   AbstractWebsite

In situ tracer experiments conducted on the North Carolina continental slope reveal that tube-building worms (Polychaeta: Maldanidae) can, without ingestion, rapidly subduct freshly deposited, algal carbon (C-13-labeled diatoms) and inorganic materials (slope sediment and glass beads) to depths of 10 cm or more in the sediment column. Transport over 1.5 days appears to be nonselective but spatially patchy, creating localized, deep hotspots. As a result of this transport, relatively fresh organic matter becomes available soon after deposition to deep-dwelling microbes and other infauna, and both aerobic and anaerobic processes may be enhanced. Comparison of tracer subduction with estimates from a diffusive mixing model using Th-234-based coefficients, suggests that maldanid subduction activities, within 1.5 d of particle deposition, could account for 25-100% of the mixing below 5 cm that occurs on 100-day time scales. Comparisons of community data from the North Carolina slope for different places and times indicate a correlation between the abundance of deep-dwelling maldanids and the abundance and the dwelling depth in the sediment column of other infauna. Pulsed inputs of organic matter occur frequently in margin environments and maldanid polychaetes are a common component of continental slope macrobenthos. Thus, the activities we observe are likely to be widespread and significant for chemical cycling (natural and anthropogenic materials) on the slope. We propose that species like maldanids, that rapidly redistribute labile organic matter within the seabed, probably function as keystone resource modifiers. They may exert a disproportionately strong influence (relative to their abundance) on the structure of infaunal communities and on the timing, location and nature of organic matter diagenesis and burial in continental margin sediments.

1998
Thistle, D, Levin LA.  1998.  The effect of experimentally increased near-bottom flow on metazoan meiofauna at a deep-sea site, with comparison data on macrofauna. Deep-Sea Research Part I-Oceanographic Research Papers. 45:625-+.   10.1016/s0967-0637(97)00101-5   AbstractWebsite

It has been argued that strong near-bottom hows affect macrofauna and meiofauna in the deep sea, but the evidence comes largely from studies that compared sites separated geographically by hundreds to thousands of kilometers and in depth by hundreds of meters. In this paper, the results of the first experimental investigation of the effects of strong near-bottom flow on deep-sea metazoan meiofauna are presented. At a site (32 degrees 27.581' N, 127 degrees 47.839' W) at 583 m depth on the Fieberling Guyot summit plain, the submersible Alvin emplaced weirs designed to increase the near-bottom flow locally. After 6.5 weeks, sediments in the weirs and unmanipulated locations in the vicinity were sampled. The abundances of nematodes, harpacticoid copepods, ostracods, and kinorhynchs, considered collectively and as individual taxa, were significantly lower in the weir samples than in the background samples. Parallel responses were observed in total macrofaunal and mollusk abundances. Proportional declines in kinorhynchs and mollusks were observed as well. These results suggest that strong near-bottom flow can reduce the abundance of meiofauna and macrofauna in the deep sea and alter assemblage composition. (C) 1998 Elsevier Science Ltd. All rights reserved.

Levin, LA, Talley TS, Hewitt J.  1998.  Macrobenthos of Spartina foliosa (Pacific cordgrass) salt marshes in southern California: Community structure and comparison to a Pacific mudflat and a Spartina alterniflora (Atlantic smooth cordgrass) marsh. Estuaries. 21:129-144.   10.2307/1352552   AbstractWebsite

Environmental attributes (vegetation and sediment properties) of and macrofaunal community structure in sediments of five southern California Spartina foliosa marshes (San Diego Bay, Mission Bay, Upper Newport Bay, Bolsa Chica Lagoon, and Anaheim Bay) were examined during October 1994. Macrofaunal densities in Pacific S. foliosa marshes (avg. 122,268 indiv. m(-2) > 300 mu m) were 3 to 10 times higher than observed in Atlantic S. alterniflora and S. anglica marshes. The macrofauna of S. foliosa marshes was composed mainly of enchytraeid, naidid, and tubificid oligochaetes (66%), with the enchytraeids dominant at all sites except Bolsa Chica Lagoon. Polychaetes, insects, and peracarid crustaceans accounted for most of the remaining fauna. Multivariate analyses indicated greatest faunal similarity between the two southernmost marshes (Mission Bay and San Diego Bay), and between Anaheim and Newport Bay marshes, with Bolsa Chica Lagoon exhibiting a distinct assemblage. There were strong positive associations of faunal abundance and composition with percent organic matter and percent open area, and negative associations with percent sand and dry weight of algae. For the vegetated marsh in Mission Bay, faunal comparisons were made with an adjacent mudflat and with a S. alterniflora marsh in North Carolina, USA. The unvegetated mudflat exhibited similar macrofaunal densities but higher species richness than the adjacent Spartina marsh. The macrofaunal assemblage of the Mission Bay S. foliosa marsh differed from that of the Atlantic S. alterniflora marsh and the Pacific mudflat in having a greater proportion of oligochaetes, especially Enchytraeidae, and fewer polychaetes. This study represents the first published description that we are aware of for macrofauna in S. foliosa vegetated marsh sediments. The findings document faunal variation among southern California embayments and suggest that differences in macrobenthic community structure occur between marsh and mudflat habitat as web as between east and west coast Spartina marshes. Observed differences may have significant implications for wetland conservation and restoration efforts.

1999
Levin, LA, Blair NE, Martin CM, Demaster DJ, Plaia G, Thomas CJ.  1999.  Macrofaunal processing of phytodetritus at two sites on the Carolina margin: in situ experiments using (13)C-labeled diatoms. Marine Ecology-Progress Series. 182:37-54.   10.3354/meps182037   AbstractWebsite

Tracer experiments using (13)C-labeled diatoms Thalassiosira pseudonana were carried out at two 850 m sites (I off Cape Fear and III off Cape Hatteras) on the North Carolina, USA, slope to examine patterns of macrofaunal consumption of fresh phytodetritus. Experiments examined the influence of taxon, feeding mode, body size and vertical position within the sediment column on access to surficial organic matter. delta(13)C measurements were made on macrofaunal metazoans and agglutinating protozoans from background sediments and from sediment plots in which (13)C-labeled diatoms were deposited and then sampled 0.3 h, 1 to 1.5 d, 3 mo and 14 mo later. Significant between-site differences were observed in background delta(13)C signatures of sediments, metazoans, and large, agglutinating protozoans, with values 2 to 3 parts per thousand lower at Site III than at Site I. Background delta(13)C signatures also varied as a function of taxon and of vertical position in the sediment column at Site III. The background delta(13)C value of carnivores was higher than that of surface-deposit feeders among Site I annelids, but no annelid feeding-group differences were observed at Site III. delta(13)C data from short-term (1 to 1.5 d) experiments revealed rapid diatom ingestion, primarily by agglutinated protozoans and annelids at Site I and mainly by annelids at Site III. Selective feeding on diatoms was exhibited by paraonid polychaetes, especially Aricidea spp. Exceptionally high uptake and retention of diatom C also was observed in the maldanid Praxillella sp., the nereid Ceratocephale sp. and several other surface-deposit feeding polychaetes. After 14 mo, little of the diatom (13)C remained at Site III, but high concentrations of the tracer were present in annelids and agglutinating protozoans at Site I. At both sites, nonannelid metazoans and subsurface-deposit feeding annelids exhibited the least uptake and retention of diatom C. Our hypotheses that large-bodied taxa and shallow-dwelling infauna should have greatest access to freshly deposited organic matter were not borne out. Some small, deep-dwelling taxa acquired label more readily than large or near-surface forms. Differences in tracer fates between sites reflected greater vertical mixing at Site III. These results indicate heterogeneity in benthic processes along the Carolina margin. but suggest that labile organic matter is consumed quickly at both sites. Because most of the taxa found to consume freshly deposited diatoms in these experiments are typical of bathyal settings, we infer that phytodetritus reaching the seabed in margin environments is rapidly processed by protozoan and metazoan components of the benthic fauna.

Thistle, D, Levin LA, Gooday AJ, Pfannkuche O, Lambshead PJD.  1999.  Physical reworking by near-bottom flow alters the metazoan meiofauna of Fieberling Guyot (northeast Pacific). Deep-Sea Research Part I-Oceanographic Research Papers. 46:2041-2052.   10.1016/s0967-0637(99)00040-0   AbstractWebsite

Although much of the deep sea is physically tranquil, some regions experience near-bottom flows that rework the surficial sediment. During periods of physical reworking, animals in the reworked layer risk being suspended, which can have both positive and negative effects. Reworking can also change the sediment in ecologically important ways, so the fauna of reworked sites should differ from that of quiescent locations. We combined data from two reworked, bathyal sites on the summit of Fieberling Guyot (32 degrees 27.631'N, 127 degrees 49.489'W; 32 degrees 27.581'N, 127 degrees 47.839'W) and compared the results with those of more tranquil sites. We tested for differences in the following parameters, which seemed likely to be sensitive to the direct or indirect effects of reworking: (1) the vertical distribution of the meiofauna in the sea bed, (2) the relative abundance of surface-living harpacticoids, (3) the proportion of the fauna consisting of interstitial harpacticoids, (4) the ratio of harpacticoids to nematodes. We found that the vertical distributions of harpacticoid copepods, ostracods, and kinorhynchs were deeper on Fieberling. In addition, the relative abundance of surface-living harpacticoids was less, the proportion of interstitial harpacticoids was greater, and the ratio of harpacticoids to nematodes was greater on Fieberling. These differences between Fieberling and the comparison sites suggest that physical reworking affects deep-sea meiofauna and indicate the nature of some of the effects. (C) 1999 Elsevier Science Ltd. AII rights reserved.

Talley, TS, Levin LA.  1999.  Macrofaunal succession and community structure in Salicornia marshes of southern California. Estuarine Coastal and Shelf Science. 49:713-731.   10.1006/ecss.1999.0553   AbstractWebsite

Lack of basic understanding of ecosystem structure and function forms a major impediment to successful conservation of coastal ecosystems. This paper provides a description of the fauna and examines faunal succession in Salicornia-vegetated sediments of southern California. Environmental attributes (vegetation and sediment properties) and macrofaunal (animals greater than or equal to 0.3 mm) community structure were examined in sediments of five natural, southern California Salicornia spp. marshes (Tijuana Estuary, San Diego Bay, Mission Bay, Upper Newport Bay and Anaheim Bay) and in created Salicornia marshes 16 months to 10 years in age, located within four of the bays. Oligochaetes and insects were the dominant taxa in both natural (71 to 98% of total fauna) and created (91 to 97%) marshes. In San Diego, Newport and Anaheim Bays, macrofaunal densities were generally higher in the created marshes (88 000 to 290 000 ind m(-2)) than in their natural counterparts (26 000 to 50 000 ind m(-2)). In the youngest system, Mission Bay, the reverse was true (natural: 113 000 vs created: 28 000 ind m-2). Similar species numbers were recorded from the created and adjacent natural marshes. Insects, especially chironomids, dolichopodids, and heleids, as well as the naidid oligochaete, Paranais litoralis, characterize early successional stages. Enchytraeid and tubificid oligochaetes reflect later succession evident in natural and older created marshes. Sediment organic matter (both combustible and below-ground plant biomass) was the environmental variable most commonly associated with densities of various macrofaunal taxa. These relationships were generally negative in the natural marshes and positive in the created marshes. Within-bay comparisons of macrofauna from natural Salicornia- vs Spartina-vegetated habitat in San Diego and Mission Bays revealed lower macrofaunal density (San Diego Bay only), proportionally fewer oligochaetes and more insects, and no differences in species richness in the Salicornia habitat. The oldest created Salicornia marsh (San Diego Bay) exhibited an assemblage intermediate in composition between those of the natural Salicornia- and Spartina-vegetated marshes. These results suggest: (a) faunal recovery following Salicornia marsh creation can require 10 or more years, (b) high macrofaunal variability among bays requires marsh creation reference site selection from within the same bay, and (c) Spartina-based research should not be used for Salicornia marsh management decisions. (C) 1999 Academic Press.

2000
Levin, LA, Talley T.  2000.  Influences of vegetation and abiotic environmental factors on salt marsh benthos. Concepts and controversies in tidal marsh ecology. ( Weinstein M, Kreeger D, Eds.).:661-708., Dordrecht ; Boston: Kluwer Academic Abstract
n/a
2001
Blair, NE, Levin LA, Demaster DJ, Plaia G, Martin C, Fornes W, Thomas C, Pope R.  2001.  The biogeochemistry of carbon in continental slope sediments. Organism-sediment Interactions. ( Aller JY, Woodin S, Aller RC, Belle W. Baruch Institute for Marine Biology and Coastal Research. , Eds.).:243-262., Columbia: Published for the Belle W. Baruch Insitute for Marine Biology and Coastal Research by the University of South Carolina Press Abstract
n/a
Talley, TS, Levin LA.  2001.  Modification of sediments and macrofauna by an invasive marsh plant. Biological Invasions. 3:51-68.   10.1023/A:1011453003168   AbstractWebsite

Invasive grasses have recently altered salt marsh ecosystems throughout the northern hemisphere. On the eastern seaboard of the USA, Phragmites australis has invaded both brackish and salt marsh habitats. Phragmites australis influence on sediments and fauna was investigated along a salinity and invasion-age gradient in marshes of the lower Connecticut River estuary. Typical salinities were about 19-4 ppt in Site I, 9-10 ppt in Site II and 5-7 ppt in Site III. Strongest effects were evident in the least saline settings (II and III) where Phragmites has been present the longest and exists in monoculture. Limited influence was evident in the most saline region (I) where Phragmites and native salt marsh plants co-occur. The vegetation within Phragmites stands in tidal regions of the Connecticut River generally exhibits taller, but less dense shoots, higher above-ground biomass, and lower below-ground biomass than does the un-invaded marsh flora. There were lower sediment organic content, greater litter accumulation and higher sediment chlorophyll a concentrations in Phragmites-invaded than un-invaded marsh habitat. Epifaunal gastropods (Succinea wilsoni and Stagnicola catascopium) were less abundant in habitats where Phragmites had invaded than in un-invaded marsh habitat. Macro-infaunal densities were lower in the Phragmites-invaded than un-invaded habitats at the two least saline sites (II and III). Phragmites stands supported more podurid insects, sabellid polychaetes, and peracarid crustaceans, fewer arachnids, midges, tubificid and enchytraeid oligochaetes, and greater habitat-wide taxon richness as measured by rarefaction, than did the uninvaded stands. The magnitude and significance of the compositional differences varied with season and with site; differences were generally greatest at the oldest, least saline sites (II and III) and during May, when faunal densities were higher than in September. However, experimental design and the 1-year study period precluded clear separation of salinity, age, and seasonal effects. Although structural effects of Phragmites on salt marsh faunas are evident, further investigation is required to determine the consequences of these effects for ecosystem function.

Talley, TS, Crooks JA, Levin LA.  2001.  Habitat utilization and alteration by the invasive burrowing isopod, Sphaeroma quoyanum, in California salt marshes. Marine Biology. 138:561-573.   10.1007/s002270000472   AbstractWebsite

In recent years the pace of exotic species introduction and invasion has accelerated, particularly in estuaries and wetlands. Species invasions may affect coastal ecosystems in many ways. Alteration of sedimentary environments, through structure formation and burrowing, has particularly dramatic effects on coastal habitats. This study examines modification of channel bank and marsh edge habitat by the burrowing Australasian isopod Sphaeroma quoyanum Milne Edwards, in created and natural salt marshes of San Diego Bay and San Francisco Bay. Abundance and distribution patterns of this isopod species, its relationships with habitat characteristics, and its effects on sediment properties and bank erosion were examined seasonally, and in several marsh microhabitats. Mean isopod densities were 1541 and 2936 individuals per 0.25 m(2) in San Francisco Bay, and 361 and 1153 individuals per 0.25 m(2) in San Diego Bay study sites during December and July 1998, respectively. This isopod forms dense, anastomosing burrow networks. S. quoyanum densities did not differ as a function of location within creeks or location in natural versus created marshes. Burrows, which are on average 6 mm wide and 2 cm long, were associated with firm sediments containing high detrital biomass. Although erosion is a natural process along salt marsh banks, enclosure experiments demonstrated that isopod activities can enhance sediment loss from banks. In areas infested with S. quoyanum, losses may exceed 100 cm of marsh edge per year. The effects of habitat alteration by this invading species are likely to increase in severity in the coastal zone as these ecosystems become degraded.

2002
Demaster, DJ, Thomas CJ, Blair NE, Fornes WL, Plaia G, Levin LA.  2002.  Deposition of bomb (14)C in continental slope sediments of the Mid-Atlantic Bight: assessing organic matter sources and burial rates. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 49:4667-4685.   10.1016/s0967-0645(02)00134-0   AbstractWebsite

As part of the Ocean Margins Program (OMP), organic carbon (14)C measurements have been made on benthic fauna and kasten core sediments from the North Carolina continental slope. These analyses are used to evaluate the nature and burial flux of organic matter in the OMP study area off Cape Hatteras. Despite the fact that surface sediment (14)C contents ranged from -41 to -215 per mil, the benthic fauna (primarily polychactes) all contained significant amounts of bomb-(14)C (body tissue (14)C contents ranging from + 20 to + 82 per mil). Bomb-(14)C clearly is reaching the seabed on the North Carolina slope, and the labile planktonic material carrying this signal is a primary source of nutrition to the benthic ecosystem. The enrichment of (14)C in benthic faunal tissue relative to the (14)C content of bulk surface-sediment organic matter (a difference of similar to 150 per mil) is attributed to a combination of particle selection and selective digestive processes. Organic carbon burial rates from 12 stations on the North Carolina slope varied from 0.02 to 1.7 mol of Cm(-2) yr(-1), with a mean value of 0.7 mol of C m(-2) yr(-1). The accumulation of organic matter on the upper slope accounts for < 1 % of the primary production in the entire continental margin system. The North Carolina margin was deliberately selected because of its potential for offshore transport and high sediment deposition rates, and even in this environment, burial of organic carbon accounts for a very small fraction of the primary production occurring in surface waters. (C) 2002 Elsevier Science Ltd. All rights reserved.

Levin, LA, Talley TS.  2002.  Natural and manipulated sources of heterogeneity controlling early faunal development of a salt marsh. Ecological Applications. 12:1785-1802.   10.2307/3099938   AbstractWebsite

Ecosystem recovery following wetland restoration offers exceptional opportunities to study system structure, function, and successional processes in salt marshes. This study used observations of natural variation and large-scale manipulative experiments to test the influence of vascular vegetation and soil organic matter on the rate and trajectory of macrofaunal recovery in a southern California created salt marsh, the Crown Point Mitigation Site. During the first three years following marsh establishment, macrofaunal density and species richness recovered rapidly within the Spartina foliosa (cordgrass) zone; densities in the created marsh were 50% of those in the natural marsh after 16 mo and 97% after 28 mo. However, the early successional assemblage had a lower proportion of tubificid and enchytraeid oligochaetes, and a higher proportion of chironomids and other insect larvae than did the mature natural marsh. Most of the colonizers arrived by rafting on sea grass and algae rather than by larval dispersal. Initial planting of S. foliosa had no influence on macrofaunal recovery, perhaps because of variable transplant survival. However, subsequently, both positive and negative correlations were observed between densities of some macrofaunal taxa and shoot densities of S. foliosa or Salicornia spp. (pickleweed). Salinity and measures of soil organics (belowground biomass, combustible organic matter, and chlorophyll a) also were correlated with macrofaunal densities and taxon richness. Of foul added soil amendments (kelp, alfalfa, peat, and Milorganite), Milorganite (a sewage product) and kelp both promoted macrofaunal colonization during year 1, but effects were short lived. The most significant sources of heterogeneity in the recovering marsh were associated with site history and climate variation. Faunal recovery was most rapid in highly localized, organic-rich marsh sediments that were remnants of the historical wetland. Elevated sea level during the 1998 El Nino corresponded with similarity of macrofaunal communities in the created and natural marshes. The large spatial scale and multi-year duration of this study revealed that natural sources of spatial and temporal heterogeneity may exert stronger influence on faunal succession in California wetlands than manipulation of vegetation or soil properties.

2003
Levin, LA, Gooday A.  2003.  The Deep Atlantic Ocean. Ecosystems of the deep oceans. ( Tyler PA, Ed.).:111-178., Amsterdam ; New York: Elsevier Abstract
n/a
Levin, LA, Ziebis W, Mendoza GF, Growney VA, Tryon MD, Brown KM, Mahn C, Gieskes JM, Rathburn AE.  2003.  Spatial heterogeneity of macrofauna at northern California methane seeps: influence of sulfide concentration and fluid flow. Marine Ecology-Progress Series. 265:123-139.   10.3354/meps265123   AbstractWebsite

Relationships among fluid flow, sulfide concentration, sulfur bacteria and macrofaunal assemblages were examined at methane seeps on the northern California margin, near the mouth of the Eel River (512 to 525 m). Over a 6 mo period, sediments covered with microbial mats exhibited significant but variable outflow of altered fluids, with no flow reversals. This fluid flow was associated with high porewater sulfide concentrations (up to 20 mM) and almost no oxygen penetration of sediments (<0.1 mm). Vesicomya pacifica (clam) bed and non-seep sediments exhibited little net fluid outflow and similar oxygen penetration (3 and 4 mm, respectively); however, sulfide concentrations were higher in subsurface clam-bed sediments (up to 2 mM) than in non-seep sediments (<200 muM). Macrofaunal densities did not differ among the 3 habitats (13 800 to 16 800 ind. m(-2); >300 mum), but biomass and diversity (no. species per core, E(S-100), H') were lower and composition varied in the sulfidic microbial mat sediments relative to clam-bed and non-seep sediments. The community in microbial mat-covered sediments consisted largely (82%) of 6 species in the polychaete family Dorvilleidae, whereas the clam-bed and non-seep microhabitats supported a mixture of annelids, peracarid crustaceans, nemerteans, and mollusks. Vertical microprofiling of sulfide in animal cores indicated that most taxa avoid H2S concentrations >1 mM. However, sulfide-oxidizing filamentous bacteria, dorvilleid polychaetes and bivalves (mainly V. pacifica) exhibited highest densities at sulfide concentrations of 1 to 5 mM sulfide. Horizontal and vertical patterns of sulfide availability have a strong influence on the fine-scale distribution, structure and composition of macrofaunal assemblages inhabiting methane seeps and must be accounted for when characterizing the microbiology and ecology of seep habitats.

2006
Arntz, WE, Gallardo VA, Gutierrez D, Isla E, Levin LA, Mendo J, Neira C, Rowe GT, Tarazona J, Wolff M.  2006.  El Niño and similar perturbation effects on the benthos of the Humboldt, California, and Benguela Current upwelling ecosystems. Advances in Geosciences. 6:243-265.: European Geosciences Union, c/o E.O.S.T. 5, rue Rene Descartes Strasbourg Cedex 67084 France, [mailto:egu.production@copernicus.org], [URL:http://www.copernicus.org/EGU] AbstractWebsite

To a certain degree, Eastern Boundary Current (EBC) ecosystems are similar: Cold bottom water from moderate depths, rich in nutrients, is transported to the euphotic zone by a combination of trade winds, Coriolis force and Ekman transport. The resultant high primary production fuels a rich secondary production in the upper pelagic and nearshore zones, but where O sub(2) exchange is restricted, it creates oxygen minimum zones (OMZs) at shelf and upper slope (Humboldt and Benguela Current) or slope depths (California Current). These hypoxic zones host a specifically adapted, small macro- and meiofauna together with giant sulphur bacteria that use nitrate to oxydise H sub(2)S. In all EBC, small polychaetes, large nematodes and other opportunistic benthic species have adapted to the hypoxic conditions and co-exist with sulphur bacteria, which seem to be particularly dominant off Peru and Chile. However, a massive reduction of macrobenthos occurs in the core of the OMZ. In the Humboldt Current area the OMZ ranges between <100 and about 600 m, with decreasing thickness in a poleward direction. The OMZ merges into better oxygenated zones towards the deep sea, where large cold-water mega- and macrofauna occupy a dominant role as in the nearshore strip. The Benguela Current OMZ has a similar upper limit but remains shallower. It also hosts giant sulphur bacteria but little is known about the benthic fauna. However, sulphur eruptions and intense hypoxia might preclude the coexistence of significant mega- und macrobenthos. Conversely, off North America the upper limit of the OMZ is considerably deeper (e.g., 500-600 m off California and Oregon), and the lower boundary may exceed 1000m. The properties described are valid for very cold and cold (La Nina and "normal") ENSO conditions with effective upwelling of nutrient-rich bottom water. During warm (El Nino) episodes, warm water masses of low oxygen concentration from oceanic and equatorial regions enter the upwelling zones, bringing a variety of (sub)tropical immigrants. The autochthonous benthic fauna emigrates to deeper water or poleward, or suffers mortality. However, some local macrofaunal species experience important population proliferations, presumably due to improved oxygenation (in the southern hemisphere), higher temperature tolerance, reduced competition or the capability to use different food. Both these negative and positive effects of el Nino influence local artisanal fisheries and the livelihood of coastal populations. In the Humboldt Current system the hypoxic seafloor at outer shelf depths receives important flushing from the equatorial zone, causing havoc on the sulphur bacteria mats and immediate recolonisation of the sediments by mega- and macrofauna. Conversely, off California, the intruding equatorial water masses appear to have lower oxygen than ambient waters, and may cause oxygen deficiency at upper slope depths. Effects of this change have not been studied in detail, although shrimp and other taxa appear to alter their distribution on the continental margin. Other properties and reactions of the two Pacific EBC benthic ecosystems to el Nino seem to differ, too, as does the overall impact of major episodes (e.g., 1982/1983(1984) vs. 1997/1998). The relation of the "Benguela Nino" to ENSO seems unclear although many Pacific- Atlantic ocean and atmosphere teleconnections have been described. Warm, low- oxygen equatorial water seems to be transported into the upwelling area by similar mechanisms as in the Pacific, but most major impacts on the eukaryotic biota obviously come from other, independent perturbations such as an extreme eutrophication of the sediments ensuing in sulphidic eruptions and toxic algal blooms. Similarities and differences of the Humboldt and California Current benthic ecosystems are discussed with particular reference to ENSO impacts since 1972/73. Where there are data available, the authors include the Benguela Current ecosystem as another important, non-Pacific EBC, which also suffers from the effects of hypoxia.

2007
Thorrold, SR, Zacherl DC, Levin LA.  2007.  Population connectivity and larval dispersal using geochemical signatures in calcified structures. Oceanography. 20:80-89.   dx.doi.org/10.5670/oceanog.2007.31   AbstractWebsite

The importance of larval dispersal to the population dynamics and biogeography of marine organisms has been recognized for almost a century (Hjort, 1914; Thorson, 1950). More recently, theoretical studies have highlighted the role that connectivity may play in determining the resilience of marine populations (Hastings and Botsford, 2006). Effective spatial management of marine capture fisheries, including the design of marine reserve networks, also requires an understanding of population connectivity (Sale et al., 2005). However, remarkably few empirical estimates of larval dispersal or population connectivity in ocean environments exist.