Export 66 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R [S] T U V W X Y Z   [Show ALL]
Thornhill, DJ, Struck TH, Ebbe B, Lee RW, Mendoza GF, Levin LA, Halanych KM.  2012.  Adaptive radiation in extremophilic Dorvilleidae (Annelida): diversification of a single colonizer or multiple independent lineages? Ecology and Evolution. 2:1958-1970.   10.1002/ece3.314   AbstractWebsite

Metazoan inhabitants of extreme environments typically evolved from forms found in less extreme habitats. Understanding the prevalence with which animals move into and ultimately thrive in extreme environments is critical to elucidating how complex life adapts to extreme conditions. Methane seep sediments along the Oregon and California margins have low oxygen and very high hydrogen sulfide levels, rendering them inhospitable to many life forms. Nonetheless, several closely related lineages of dorvilleid annelids, including members of Ophryotrocha, Parougia, and Exallopus, thrive at these sites in association with bacterial mats and vesicomyid clam beds. These organisms are ideal for examining adaptive radiations in extreme environments. Did dorvilleid annelids invade these extreme environments once and then diversify? Alternatively, did multiple independent lineages adapt to seep conditions? To address these questions, we examined the evolutionary history of methane-seep dorvilleids using 16S and Cyt b genes in an ecological context. Our results indicate that dorvilleids invaded these extreme habitats at least four times, implying preadaptation to life at seeps. Additionally, we recovered considerably more dorvilleid diversity than is currently recognized. A total of 3 major clades (designated "Ophryotrocha,""Mixed Genera" and "Parougia") and 12 terminal lineages or species were encountered. Two of these lineages represented a known species, Parougia oregonensis, whereas the remaining 10 lineages were newly discovered species. Certain lineages exhibited affinity to geography, habitat, sediment depth, and/or diet, suggesting that dorvilleids at methane seeps radiated via specialization and resource partitioning.

Breitburg, DL, Salisbury J, Bernhard JM, Cai WJ, Dupont S, Doney SC, Kroeker KJ, Levin LA, Long WC, Milke LM, Miller SH, Phelan B, Passow U, Seibel BA, Todgham AE, Tarrant AM.  2015.  And on top of all that... Coping with ocean acidification in the midst of many stressors. Oceanography. 28:48-61.   10.5670/oceanog.2015.31   AbstractWebsite

Oceanic and coastal waters are acidifying due to processes dominated in the open ocean by increasing atmospheric CO2 and dominated in estuaries and some coastal waters by nutrient-fueled respiration. The patterns and severity of acidification, as well as its effects, are modified by the host of stressors related to human activities that also influence these habitats. Temperature, deoxygenation, and changes in food webs are particularly important co-stressors because they are pervasive, and both their causes and effects are often mechanistically linked to acidification. Development of a theoretical underpinning to multiple stressor research that considers physiological, ecological, and evolutionary perspectives is needed because testing all combinations of stressors and stressor intensities experimentally is impossible. Nevertheless, use of a wide variety of research approaches is a logical and promising strategy for improving understanding of acidification and its effects. Future research that focuses on spatial and temporal patterns of stressor interactions and on identifying mechanisms by which multiple stressors affect individuals, populations, and ecosystems is critical. It is also necessary to incorporate consideration of multiple stressors into management, mitigation, and adaptation to acidification and to increase public and policy recognition of the importance of addressing acidification in the context of the suite of other stressors with which it potentially interacts.

Levin, L, Gutierrez D, Rathburn A, Neira C, Sellanes J, Munoz P, Gallardo V, Salamanca M.  2002.  Benthic processes on the Peru margin: a transect across the oxygen minimum zone during the 1997-98 El Nino. Progress in Oceanography. 53:1-27.   10.1016/s0079-6611(02)00022-8   AbstractWebsite

Oxygen minimum zones (OMZs) are widespread features in the most productive regions of the world ocean. A holistic view of benthic responses to OMZ conditions will improve our ability to predict ecosystem-level consequences of climatic trends that influence oxygen availability, such as global warming or ENSO-related events. Four stations off Callao, Peru (-12'S, Station A, 305 m; Station B, 562 m; Station C, 830 nu and Station D, 1210 m) were sampled to examine the influence of the low bottom-water oxygen concentration and high organic-matter availability within the OMZ (O(2) < 0.5 ml L(-1)) on sediments, benthic communities, and bioturbation. Sampling took place during early January 1998, an intense El Ni (n) over tildeo period associated with higher-than-normal levels of O(2) on the shelf and upper slope. Peru slope sediments were highly heterogeneous. Sediment total organic carbon content exceeded 16%, lamination was present below 6 cm depth, and filamentous sulfur bacteria (Thioploca spp.) were present at Station A, (305 m, 0, < 0.02 ml L(-1)). Deeper sites contained phosphorite crusts or pellets and exhibited greater bottom-water oxygenation and lower content and quality of organic matter. X-radiographs and (210)Pb and (234)Th profiles suggested the dominance of lateral transport and bioturbation over pelagic sedimentation at the mid- and lower slope sites. Macrofauna, metazoan meiofauna and foraminifera exhibited coherence of density patterns across stations, with maximal densities (and for macrofauna, reduced diversity) at Station A, where bottom-water oxygen concentration was lowest and sediment labile organic matter content (LOC: sum of protein, carbohydrate and lipid carbon) was greatest. Metazoan and protozoan meiofaunal densities were positively correlated with sediment LOC. The taxa most tolerant of nearly anoxic, organic-rich conditions within the Peru OMZ were calcareous foraminifera, nematodes and gutless phallodrilinid (symbiont-bearing) oligochaetes. Agglutinated foraminifera, harpacticoid copepods, polychaetes and many other macrofaunal taxa increased in relative abundance below the OMZ. During the study (midpoint of the 1997-98 El Ni (n) over tildeo), the upper OMZ boundary exhibited a significant deepening (to 190 m) relative to 'normal', non-El Ni (n) over tildeo conditions (< 100 m), possibly causing a mild, transient oxygenation over the upper slope (200-300 m) and reduction of the organic particle flux to the seabed. Future sampling may determine whether the Peru margin system exhibits dynamic responses to changing ENSO-related conditions. (C) 2002 Elsevier Science Ltd. All rights reserved.

Sperling, EA, Frieder CA, Levin LA.  2016.  Biodiversity response to natural gradients of multiple stressors on continental margins. Proceedings of the Royal Society of London B: Biological Sciences. 283   10.1098/rspb.2016.0637   Abstract

Sharp increases in atmospheric CO2 are resulting in ocean warming, acidification and deoxygenation that threaten marine organisms on continental margins and their ecological functions and resulting ecosystem services. The relative influence of these stressors on biodiversity remains unclear, as well as the threshold levels for change and when secondary stressors become important. One strategy to interpret adaptation potential and predict future faunal change is to examine ecological shifts along natural gradients in the modern ocean. Here, we assess the explanatory power of temperature, oxygen and the carbonate system for macrofaunal diversity and evenness along continental upwelling margins using variance partitioning techniques. Oxygen levels have the strongest explanatory capacity for variation in species diversity. Sharp drops in diversity are seen as O2 levels decline through the 0.5–0.15 ml l−1 (approx. 22–6 µM; approx. 21–5 matm) range, and as temperature increases through the 7–10°C range. pCO2 is the best explanatory variable in the Arabian Sea, but explains little of the variance in diversity in the eastern Pacific Ocean. By contrast, very little variation in evenness is explained by these three global change variables. The identification of sharp thresholds in ecological response are used here to predict areas of the seafloor where diversity is most at risk to future marine global change, noting that the existence of clear regional differences cautions against applying global thresholds.

Mora, C, Wei CL, Rollo A, Amaro T, Baco AR, Billett D, Bopp L, Chen Q, Collier M, Danovaro R, Gooday AJ, Grupe BM, Halloran PR, Ingels J, Jones DOB, Levin LA, Nakano H, Norling K, Ramirez-Llodra E, Rex M, Ruhl HA, Smith CR, Sweetman AK, Thurber AR, Tjiputra JF, Usseglio P, Watling L, Wu TW, Yasuhara M.  2013.  Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. Plos Biology. 11   10.1371/journal.pbio.1001682   AbstractWebsite

Ongoing greenhouse gas emissions can modify climate processes and induce shifts in ocean temperature, pH, oxygen concentration, and productivity, which in turn could alter biological and social systems. Here, we provide a synoptic global assessment of the simultaneous changes in future ocean biogeochemical variables over marine biota and their broader implications for people. We analyzed modern Earth System Models forced by greenhouse gas concentration pathways until 2100 and showed that the entire world's ocean surface will be simultaneously impacted by varying intensities of ocean warming, acidification, oxygen depletion, or shortfalls in productivity. In contrast, only a small fraction of the world's ocean surface, mostly in polar regions, will experience increased oxygenation and productivity, while almost nowhere will there be ocean cooling or pH elevation. We compiled the global distribution of 32 marine habitats and biodiversity hotspots and found that they would all experience simultaneous exposure to changes in multiple biogeochemical variables. This superposition highlights the high risk for synergistic ecosystem responses, the suite of physiological adaptations needed to cope with future climate change, and the potential for reorganization of global biodiversity patterns. If co-occurring biogeochemical changes influence the delivery of ocean goods and services, then they could also have a considerable effect on human welfare. Approximately 470 to 870 million of the poorest people in the world rely heavily on the ocean for food, jobs, and revenues and live in countries that will be most affected by simultaneous changes in ocean biogeochemistry. These results highlight the high risk of degradation of marine ecosystems and associated human hardship expected in a future following current trends in anthropogenic greenhouse gas emissions.

Levin, LA, Rathburn AE, Gutierrez D, Munoz P, Shankle A.  2003.  Bioturbation by symbiont-bearing annelids in near-anoxic sediments: Implications for biofacies models and paleo-oxygen assessments. Palaeogeography Palaeoclimatology Palaeoecology. 199:129-140.   10.1016/s0031-0182(03)00500-5   AbstractWebsite

Anoxic or nearly anoxic conditions ( < 4 muM O(2)) have long been associated with the absence of bioturbation and animal traces. This premise has guided interpretation of paleoceanographic conditions from rocks and sediments. We recently observed a high-density, living assemblage of highly mobile, symbiont-bearing, burrowing, phallodrilinid oligochaetes within a nearly anoxic basin ( <1 muM O(2) [0.02-0.03 ml l(-1)]) on the Peru margin (305 m). These observations were made during the most intense part of the 1997-98 El Ni (n) over tildeo when there may have been slight oxygenation of an otherwise anoxic basin, but oligochaete presence prior to this event is likely. The occurrence of symbiont-bearing gutless oligochaetes mainly within the upper 5 cm of the sediment column coincided with a bioturbated zone overlying distinctly laminated sediments. Our observations redefine the lower oxygen limit of macrofaunal bioturbation to much less than2 muM, and indicate a need to modify currently accepted ideas about the relationship between bioturbation and paleo-oxygen concentration. These results also address an ongoing debate about the lifestyles of bioturbating organisms in oxygen-poor settings. (C) 2003 Elsevier B.V. All rights reserved.

Mengerink, KJ, Vandover CL, Ardron J, Baker M, Escobar-Briones E, Gjerde K, Koslow J, Ramirez-Llodra E, Lara-Lopez A, Squires D, Sutton T, Sweetman A, Levin LA.  2014.  A Call For Deep-Ocean Stewardship. Science. 344:696-698.
Marlow, JJ, Steele JA, Ziebis W, Thurber AR, Levin LA, Orphan VJ.  2014.  Carbonate-hosted methanotrophy represents an unrecognized methane sink in the deep sea. Nature Communications. 5   10.1038/ncomms6094   AbstractWebsite

The atmospheric flux of methane from the oceans is largely mitigated through microbially mediated sulphate-coupled methane oxidation, resulting in the precipitation of authigenic carbonates. Deep-sea carbonates are common around active and palaeo-methane seepage, and have primarily been viewed as passive recorders of methane oxidation; their role as active and unique microbial habitats capable of continued methane consumption has not been examined. Here we show that seep-associated carbonates harbour active microbial communities, serving as dynamic methane sinks. Microbial aggregate abundance within the carbonate interior exceeds that of seep sediments, and molecular diversity surveys reveal methanotrophic communities within protolithic nodules and well-lithified carbonate pavements. Aggregations of microbial cells within the carbonate matrix actively oxidize methane as indicated by stable isotope FISH-nanoSIMS experiments and (CH4)-C-14 radiotracer rate measurements. Carbonate-hosted methanotrophy extends the known ecological niche of these important methane consumers and represents a previously unrecognized methane sink that warrants consideration in global methane budgets.

Grosholz, ED, Levin LA, Tyler C, Neira C.  2009.  Changes in community structure and ecosystem function following Spartina alterniflora invasion of Pacific estuaries. Human impacts on salt marshes : a global perspective. ( Silliman BR, Grosholz E, Bertness MD, Eds.).:23-40., Berkeley: University of California Press Abstract
Shankle, AM, Goericke R, Franks PJS, Levin LA.  2002.  Chlorin distribution and degradation in sediments within and below the Arabian Sea oxygen minimum zone. Deep-Sea Research Part I-Oceanographic Research Papers. 49:953-969.   10.1016/s0967-0637(01)00077-2   AbstractWebsite

The concentration of chlorophylla degradation products, i.e. chlorins, preserved in deep-sea sediments is a function of the amount of primary production input and the rate at which it is subsequently degraded. Sedimentary chlorins can be used as a proxy for paleoproductivity; however, our understanding of the factors controlling their preservation is limited. To study the effects of changes in export of primary production from the euphotic zone and of differences in depositional conditions on chlorin concentration in marine sediments, chlorins were analyzed by high pressure liquid chromatography from sediments taken within and below the oxygen minimum zone on the Oman margin in the Arabian Sea. Among five stations at water depths between 400 and 1250 m, variation in chlorin concentration in surface sediments (0-0.5 cm) was significantly related to water depth (used here as a proxy for chlorin fluxes to the sediments) and bottom-water oxygen concentration; the more important control on chlorin concentration of surficial sediments measured in this study is the amount of chlorins reaching the sediment. Chlorins decayed exponentially downcore (0-20 cm). The degradation of sedimentary chlorins was better described by a model in which chlorins decayed at different rates within and below the sediment mixed layer. The degradation rates within the mixed layer were 0.0280 +/- 0.0385 yr(-1) (t(1/2) = 73 yr). Below the mixed layer, degradation rates were one to two orders of magnitude less, ranging from 0.0022 +/- 0.0025 yr(-1) (t(1/2) = 680 yr). Many stations had subsurface chlorin concentration peaks between 6 and 10 cm depth. The most likely explanation for these peaks is a period of increased deposition of chlorins in the past. This could result from changes in local depositional environment or a more general increase in surface production resulting in an increased sedimentation of chlorins to the sediments 500-1000 years ago. Chlorins are a useful indicator of the magnitude of chlorin deposition; however their usage as indicators of paleoproductivity is more complicated. (C) 2002 Elsevier Science Ltd. All rights reserved.

Bowden, DA, Rowden AA, Thurber AR, Baco AR, Levin LA, Smith CR.  2013.  Cold seep epifaunal communities on the Hikurangi Margin, New Zealand: Composition, succession, and vulnerability to human activities. Plos One. 8   10.1371/journal.pone.0076869   AbstractWebsite

Cold seep communities with distinctive chemoautotrophic fauna occur where hydrocarbon-rich fluids escape from the seabed. We describe community composition, population densities, spatial extent, and within-region variability of epifaunal communities at methane-rich cold seep sites on the Hikurangi Margin, New Zealand. Using data from towed camera transects, we match observations to information about the probable life-history characteristics of the principal fauna to develop a hypothetical succession sequence for the Hikurangi seep communities, from the onset of fluid flux to senescence. New Zealand seep communities exhibit taxa characteristic of seeps in other regions, including predominance of large siboglinid tubeworms, vesicomyid clams, and bathymodiolin mussels. Some aspects appear to be novel; however, particularly the association of dense populations of ampharetid polychaetes with high-sulphide, high-methane flux, soft-sediment microhabitats. The common occurrence of these ampharetids suggests they play a role in conditioning sulphide-rich sediments at the sediment-water interface, thus facilitating settlement of clam and tubeworm taxa which dominate space during later successional stages. The seep sites are subject to disturbance from bottom trawling at present and potentially from gas hydrate extraction in future. The likely life-history characteristics of the dominant megafauna suggest that while ampharetids, clams, and mussels exploit ephemeral resources through rapid growth and reproduction, lamellibrachid tubeworm populations may persist potentially for centuries. The potential consequences of gas hydrate extraction cannot be fully assessed until extraction methods and target localities are defined but any long-term modification of fluid flow to seep sites would have consequences for all chemoautotrophic fauna.

Levin, LA, Liu KK, Emeis KC, Breitburg DL, Cloern J, Deutsch C, Giani M, Goffart A, Hofmann EE, Lachkar Z, Limburg K, Liu SM, Montes E, Naqvi W, Ragueneau O, Rabouille C, Sarkar SK, Swaney DP, Wassman P, Wishner KF.  2015.  Comparative biogeochemistry-ecosystem-human interactions on dynamic continental margins. Journal of Marine Systems. 141:3-17.   10.1016/j.jmarsys.2014.04.016   AbstractWebsite

The oceans' continental margins face strong and rapid change, forced by a combination of direct human activity, anthropogenic CO2-induced climate change, and natural variability. Stimulated by discussions in Goa, India at the IMBER IMBIZO III, we (1) provide an overview of the drivers of biogeochemical variation and change on margins, (2) compare temporal trends in hydrographic and biogeochemical data across different margins, (3) review ecosystem responses to these changes, (4) highlight the importance of margin time series for detecting and attributing change and (5) examine societal responses to changing margin biogeochemistry and ecosystems. We synthesize information over a wide range of margin settings in order to identify the commonalities and distinctions among continental margin ecosystems. Key drivers of biogeochemical variation include long-term climate cycles, CO2-induced warming, acidification, and deoxygenation, as well as sea level rise, eutrophication, hydrologic and water cycle alteration, changing land use, fishing, and species invasion. Ecosystem responses are complex and impact major margin services. These include primary production, fisheries production, nutrient cycling, shoreline protection, chemical buffering, and biodiversity. Despite regional differences, the societal consequences of these changes are unarguably large and mandate coherent actions to reduce, mitigate and adapt to multiple stressors on continental margins. (C) 2014 Elsevier BM. All rights reserved.

Bernardino, AF, Levin LA, Thurber AR, Smith CR.  2012.  Comparative composition, diversity and trophic ecology of sediment macrofauna at vents, seeps and organic falls. Plos One. 7   10.1371/journal.pone.0033515   AbstractWebsite

Sediments associated with hydrothermal venting, methane seepage and large organic falls such as whale, wood and plant detritus create deep-sea networks of soft-sediment habitats fueled, at least in part, by the oxidation of reduced chemicals. Biological studies at deep-sea vents, seeps and organic falls have looked at macrofaunal taxa, but there has yet to be a systematic comparison of the community-level attributes of sediment macrobenthos in various reducing ecosystems. Here we review key similarities and differences in the sediment-dwelling assemblages of each system with the goals of (1) generating a predictive framework for the exploration and study of newly identified reducing habitats, and (2) identifying taxa and communities that overlap across ecosystems. We show that deep-sea seep, vent and organic-fall sediments are highly heterogeneous. They sustain different geochemical and microbial processes that are reflected in a complex mosaic of habitats inhabited by a mixture of specialist (heterotrophic and symbiont-associated) and background fauna. Community-level comparisons reveal that vent, seep and organic-fall macrofauna are very distinct in terms of composition at the family level, although they share many dominant taxa among these highly sulphidic habitats. Stress gradients are good predictors of macrofaunal diversity at some sites, but habitat heterogeneity and facilitation often modify community structure. The biogeochemical differences across ecosystems and within habitats result in wide differences in organic utilization (i.e., food sources) and in the prevalence of chemosynthesis-derived nutrition. In the Pacific, vents, seeps and organic-falls exhibit distinct macrofaunal assemblages at broad-scales contributing to beta diversity. This has important implications for the conservation of reducing ecosystems, which face growing threats from human activities.

Springer, AE, Stevens LE, Anderson DE, Partnell RA, Kreamer DK, Levin LA, Flora S.  2008.  A comprehensive springs classification system. Integrating geomorphic, hydrogeochemical, and ecological criteria. Aridland springs in North America: ecology and conservation. ( Stevens LE, Meretsky VJ, Eds.).:49-75., Tucson: University of Arizona Press and the Arizona-Sonora Desert Museum Abstract
Dibacco, C, Levin LA, Sala E.  2006.  Connectivity in marine systems: the importance of larval and spore dispersal. Connectivity Conservation. ( Crooks KR, Sanjayan A, Eds.).:157-183., Cambridge: Cambridge University Press Abstract
Breitburg, D, Levin LA, Oschlies A, Grégoire M, Chavez FP, Conley DJ, Garçon V, Gilbert D, Gutiérrez D, Isensee K, Jacinto GS, Limburg KE, Montes I, Naqvi SWA, Pitcher GC, Rabalais NN, Roman MR, Rose KA, Seibel BA, Telszewski M, Yasuhara M, Zhang J.  2018.  Declining oxygen in the global ocean and coastal waters. Science. 359   10.1126/science.aam7240   Abstract

As plastic waste pollutes the oceans and fish stocks decline, unseen below the surface another problem grows: deoxygenation. Breitburg et al. review the evidence for the downward trajectory of oxygen levels in increasing areas of the open ocean and coastal waters. Rising nutrient loads coupled with climate change—each resulting from human activities—are changing ocean biogeochemistry and increasing oxygen consumption. This results in destabilization of sediments and fundamental shifts in the availability of key nutrients. In the short term, some compensatory effects may result in improvements in local fisheries, such as in cases where stocks are squeezed between the surface and elevated oxygen minimum zones. In the longer term, these conditions are unsustainable and may result in ecosystem collapses, which ultimately will cause societal and economic harm.

Ramirez-Llodra, E, Brandt A, Danovaro R, De Mol B, Escobar E, German CR, Levin LA, Arbizu PM, Menot L, Buhl-Mortensen P, Narayanaswamy BE, Smith CR, Tittensor DP, Tyler PA, Vanreusel A, Vecchione M.  2010.  Deep, diverse and definitely different: unique attributes of the world's largest ecosystem. Biogeosciences. 7:2851-2899.   10.5194/bg-7-2851-2010   AbstractWebsite

The deep sea, the largest biome on Earth, has a series of characteristics that make this environment both distinct from other marine and land ecosystems and unique for the entire planet. This review describes these patterns and processes, from geological settings to biological processes, biodiversity and biogeographical patterns. It concludes with a brief discussion of current threats from anthropogenic activities to deep-sea habitats and their fauna. Investigations of deep-sea habitats and their fauna began in the late 19th century. In the intervening years, technological developments and stimulating discoveries have promoted deep-sea research and changed our way of understanding life on the planet. Nevertheless, the deep sea is still mostly unknown and current discovery rates of both habitats and species remain high. The geological, physical and geochemical settings of the deep-sea floor and the water column form a series of different habitats with unique characteristics that support specific faunal communities. Since 1840, 28 new habitats/ecosystems have been discovered from the shelf break to the deep trenches and discoveries of new habitats are still happening in the early 21st century. However, for most of these habitats the global area covered is unknown or has been only very roughly estimated; an even smaller - indeed, minimal - proportion has actually been sampled and investigated. We currently perceive most of the deep-sea ecosystems as heterotrophic, depending ultimately on the flux on organic matter produced in the overlying surface ocean through photosynthesis. The resulting strong food limitation thus shapes deep-sea biota and communities, with exceptions only in reducing ecosystems such as inter alia hydrothermal vents or cold seeps. Here, chemoautolithotrophic bacteria play the role of primary producers fuelled by chemical energy sources rather than sunlight. Other ecosystems, such as seamounts, canyons or cold-water corals have an increased productivity through specific physical processes, such as topographic modification of currents and enhanced transport of particles and detrital matter. Because of its unique abiotic attributes, the deep sea hosts a specialized fauna. Although there are no phyla unique to deep waters, at lower taxonomic levels the composition of the fauna is distinct from that found in the upper ocean. Amongst other characteristic patterns, deep-sea species may exhibit either gigantism or dwarfism, related to the decrease in food availability with depth. Food limitation on the seafloor and water column is also reflected in the trophic structure of heterotrophic deep-sea communities, which are adapted to low energy availability. In most of these heterotrophic habitats, the dominant megafauna is composed of detritivores, while filter feeders are abundant in habitats with hard substrata (e. g. mid-ocean ridges, seamounts, canyon walls and coral reefs). Chemoautotrophy through symbiotic relationships is dominant in reducing habitats. Deep-sea biodiversity is among of the highest on the planet, mainly composed of macro and meiofauna, with high evenness. This is true for most of the continental margins and abyssal plains with hot spots of diversity such as seamounts or cold-water corals. However, in some ecosystems with particularly "extreme" physicochemical processes (e.g. hydrothermal vents), biodiversity is low but abundance and biomass are high and the communities are dominated by a few species. Two large-scale diversity patterns have been discussed for deep-sea benthic communities. First, a unimodal relationship between diversity and depth is observed, with a peak at intermediate depths (2000-3000 m), although this is not universal and particular abiotic processes can modify the trend. Secondly, a poleward trend of decreasing diversity has been discussed, but this remains controversial and studies with larger and more robust data sets are needed. Because of the paucity in our knowledge of habitat coverage and species composition, biogeographic studies are mostly based on regional data or on specific taxonomic groups. Recently, global biogeographic provinces for the pelagic and benthic deep ocean have been described, using environmental and, where data were available, taxonomic information. This classification described 30 pelagic provinces and 38 benthic provinces divided into 4 depth ranges, as well as 10 hydrothermal vent provinces. One of the major issues faced by deep-sea biodiversity and biogeographical studies is related to the high number of species new to science that are collected regularly, together with the slow description rates for these new species. Taxonomic coordination at the global scale is particularly difficult, but is essential if we are to analyse large diversity and biogeographic trends. Because of their remoteness, anthropogenic impacts on deep-sea ecosystems have not been addressed very thoroughly until recently. The depletion of biological and mineral resources on land and in shallow waters, coupled with technological developments, are promoting the increased interest in services provided by deep-water resources. Although often largely unknown, evidence for the effects of human activities in deep-water ecosystems - such as deep-sea mining, hydrocarbon exploration and exploitation, fishing, dumping and littering - is already accumulating. Because of our limited knowledge of deep-sea biodiversity and ecosystem functioning and because of the specific life-history adaptations of many deep-sea species (e. g. slow growth and delayed maturity), it is essential that the scientific community works closely with industry, conservation organisations and policy makers to develop robust and efficient conservation and management options.

Smith, CR, Levin LA, Mullineaux LS.  1998.  Deep-sea biodiversity: a tribute to Robert R. Hessler. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 45:1-11.   10.1016/s0967-0645(97)00088-x   AbstractWebsite

Through extraordinary research and training of graduate students, Robert R. Hessler has profoundly influenced our knowledge of biodiversity in the deep sea. This special volume honors his contributions and presents recent advances in the study of deep-sea biodiversity on a broad range of topics. (C) 1998 Elsevier Science Ltd. All rights reserved.

Niner, HJ, Ardron JA, Escobar EG, Gianni M, Jaeckel A, Jones DOB, Levin LA, Smith CR, Thiele T, Turner PJ, Vandover CL, Watling L, Gjerde KM.  2018.  Deep-sea mining with no net loss of biodiversity-an impossible aim. Frontiers in Marine Science. 5   10.3389/fmars.2018.00053   AbstractWebsite

Deep-sea mining is likely to result in biodiversity loss, and the significance of this to ecosystem function is not known. "Out of kind" biodiversity offsets substituting one ecosystem type (e.g., coral reefs) for another (e.g., abyssal nodule fields) have been proposed to compensate for such loss. Here we consider a goal of no net loss (NNL) of biodiversity and explore the challenges of applying this aim to deep seabed mining, based on the associated mitigation hierarchy (avoid, minimize, remediate). We conclude that the industry cannot at present deliver an outcome of NNL. This results from the vulnerable nature of deep-sea environments to mining impacts, currently limited technological capacity to minimize harm, significant gaps in ecological knowledge, and uncertainties of recovery potential of deep-sea ecosystems. Avoidance and minimization of impacts are therefore the only presently viable means of reducing biodiversity losses from seabed mining. Because of these constraints, when and if deep-sea mining proceeds, it must be approached in a precautionary and step-wise manner to integrate new and developing knowledge. Each step should be subject to explicit environmental management goals, monitoring protocols, and binding standards to avoid serious environmental harm and minimize loss of biodiversity. "Out of kind" measures, an option for compensation currently proposed, cannot replicate biodiversity and ecosystem services lost through mining of the deep seabed and thus cannot be considered true offsets. The ecosystem functions provided by deep-sea biodiversity contribute to a wide range of provisioning services (e.g., the exploitation of fish, energy, pharmaceuticals, and cosmetics), play an essential role in regulatory services (e.g., carbon sequestration) and are important culturally. The level of "acceptable" biodiversity loss in the deep sea requires public, transparent, and well-informed consideration, as well as wide agreement. If accepted, further agreement on how to assess residual losses remaining after the robust implementation of the mitigation hierarchy is also imperative. To ameliorate some of the inter-generational inequity caused by mining-associated biodiversity losses, and only after all NNL measures have been used to the fullest extent, potential compensatory actions would need to be focused on measures to improve the knowledge and protection of the deep sea and to demonstrate benefits that will endure for future generations.

Levin, LA, Mengerink K, Gjerde KM, Rowden AA, Vandover CL, Clark MR, Ramirez-Llodra E, Currie B, Smith CR, Sato KN, Gallo N, Sweetman AK, Lily H, Armstrong CW, Brider J.  2016.  Defining "serious harm" to the marine environment in the context of deep-seabed mining. Marine Policy. 74:245-259.   10.1016/j.marpol.2016.09.032   AbstractWebsite

Increasing interest in deep-seabed mining has raised many questions surrounding its potential environmental impacts and how to assess the impacts' significance. Under the United Nations Convention on the Law of the Sea (UNCLOS), the International Seabed Authority (ISA) is charged with ensuring effective protection of the marine environment as part of its responsibilities for managing mining in seabed areas beyond national jurisdiction (the Area) on behalf of humankind. This paper examines the international legal context for protection of the marine environment and defining the significant adverse change that can cause "serious harm", a term used in the ISA Mining Code to indicate a level of harm that strong actions must be taken to avoid. It examines the thresholds and indicators that can reflect significant adverse change and considers the specific vulnerability of the four ecosystems associated with the minerals targeted for mining: (1) manganese (polymetallic) nodules, (2) seafloor massive (polymetallic) sulphides, (3) cobalt-rich (polymetallic) crusts and (4) phosphorites. The distributions and ecological setting, probable mining approaches and the potential environmental impacts of mining are examined for abyssal polymetallic nodule provinces, hydrothermal vents, seamounts and phosphorite-rich continental margins. Discussion focuses on the special features of the marine environment that affect the significance of the predicted environmental impacts and suggests actions that will advance understanding of these impacts.

Vandover, CL, Smith CR, Ardron J, Dunn D, Gjerde K, Levin L, Smith S, Dinard Workshop C.  2012.  Designating networks of chemosynthetic ecosystem reserves in the deep sea. Marine Policy. 36:378-381.   10.1016/j.marpol.2011.07.002   AbstractWebsite

From the moment of their discovery, chemosynthetic ecosystems in the deep sea have held intrinsic scientific value. At the same time that the scientific community is studying chemosynthetic ecosystems other sectors are either engaged in, or planning for, activities that may adversely impact these ecosystems. There is a need and opportunity now to develop conservation strategies for networks of chemosynthetic ecosystem reserves in national and international waters through collaboration among concerned stakeholders. (C) 2011 Elsevier Ltd. All rights reserved.

Bailey, JV, Salman V, Rouse GW, Schulz-Vogt HN, Levin LA, Orphan VJ.  2011.  Dimorphism in methane seep-dwelling ecotypes of the largest known bacteria. ISME Journal. 5:1926-1935.   10.1038/ismej.2011.66   AbstractWebsite

We present evidence for a dimorphic life cycle in the vacuolate sulfide-oxidizing bacteria that appears to involve the attachment of a spherical Thiomargarita-like cell to the exteriors of invertebrate integuments and other benthic substrates at methane seeps. The attached cell elongates to produce a stalk-like form before budding off spherical daughter cells resembling free-living Thiomargarita that are abundant in surrounding sulfidic seep sediments. The relationship between the attached parent cell and free-living daughter cell is reminiscent of the dimorphic life modes of the prosthecate Alphaproteobacteria, but on a grand scale, with individual elongate cells reaching nearly a millimeter in length. Abundant growth of attached Thiomargarita-like bacteria on the integuments of gastropods and other seep fauna provides not only a novel ecological niche for these giant bacteria, but also for animals that may benefit from epibiont colonization. The ISME Journal (2011) 5, 1926-1935; doi: 10.1038/ismej.2011.66; published online 23 June 2011

Levin, LA, Etter RJ, Rex MA, Gooday AJ, Smith CR, Pineda J, Stuart CT, Hessler RR, Pawson D.  2001.  Environmental influences on regional deep-sea species diversity. Annual Review of Ecology and Systematics. 32:51-93.   10.1146/annurev.ecolsys.32.081501.114002   AbstractWebsite

Most of our knowledge of biodiversity and its causes in the deep-sea benthos derives from regional-scale sampling studies of the macrofauna. Improved sampling methods and the expansion of investigations into a wide variety of habitats have revolutionized our understanding of the deep sea. Local species diversity shows clear geographic variation on spatial scales of 100-1000 km. Recent sampling programs have revealed unexpected complexity in community structure at the landscape level that is associated with large-scale oceanographic processes and their environmental consequences. We review the relationships between variation in local species diversity and the regional-scale phenomena of boundary constraints, gradients of productivity, sediment heterogeneity, oxygen availability, hydrodynamic regimes, and catastrophic physical disturbance. We present a conceptual model of how these interdependent environmental factors shape regional-scale variation in local diversity. Local communities in the deep sea may be composed of species that exist as metapopulations whose regional distribution depends on a balance among global-scale, landscape-scale, and small-scale dynamics. Environmental gradients may form geographic patterns of diversity by influencing local processes such as predation, resource partitioning, competitive exclusion, and facilitation that determine species coexistence. The measurement of deep-sea species diversity remains a vital issue in comparing geographic patterns and evaluating their potential causes. Recent assessments of diversity using species accumulation curves with randomly pooled samples confirm the often-disputed claim that the deep sea supports higher diversity than the continental shelf. However, more intensive quantitative sampling is required to fully characterize the diversity of deep-sea sediments, the most extensive habitat on Earth. Once considered to be constant, spatially uniform, and isolated, deep-sea sediments are now recognized as a dynamic, richly textured environment that is inextricably linked to the global biosphere. Regional studies of the last two decades provide the empirical background necessary to formulate and test specific hypotheses of causality by controlled sampling designs and experimental approaches.

Levin, LA, Childers SE, Smith CR.  1991.  Epibenthic, agglutinating foraminiferans in the Santa Catalina Basin and their response to disturbance. Deep-Sea Research Part a-Oceanographic Research Papers. 38:465-483.   10.1016/0198-0149(91)90047-j   AbstractWebsite

There are five common species of large (0.5-6 cm long) epibenthic, agglutinating foraminiferans in the Santa Catalina Basin (1200-1350 m). This paper describes their basic ecology and response to mound disturbance. Combined, the five species attain mean densities of 200-300 individuals per m2 and their protoplasm has an average biomass of 199.5 mg m-2. Individual species occur at densities ranging from 7 to 100 m-2, and each species has a different population size structure. Protoplasm comprises < 2% of test volumes. Analysis of excess Th-234 revealed no indication of particle sequestering within tests, and acridine orange direct counts of bacteria provided no evidence of microbial gardening or enhancement associated with tests. Twenty-five per cent of tests examined had metazoan associates; approximately half of these were polychaetes. Experiments were carried out to investigate the response of the epibenthic foraminiferal assemblage to disturbance from large, biogenic mounds, a common feature on the Santa Catalina Basin floor. Three branched forms, Pelosina cf. arborescens, P. cf. cylindrica and a mud-walled astrorhizinid, were most abundant on background sediments, less common on natural mounds and absent from artificially-created mounds exposed for 10.5 months. Two spherical species, Oryctoderma sp. and a different mud-walled astrorhizinid, were present at similar densities on artificial mounds (9.5-10.5 months old), natural mounds and undisturbed sediments, but Oryctoderma sp. attained largest sizes on mounds. These two species appear to be opportunistic taxa that can colonize and grow rapidly on mound sediments. This study suggests that disturbance, in this case that by sediment mound builders, is an important source of spatial heterogeneity in deep-water foraminiferal communities. Where sediment mounds occur, foraminiferal assemblages will experience disequilibrium dynamics.

Sato, KN, Powell J, Rudie D, Levin LA.  2018.  Evaluating the promise and pitfalls of a potential climate change-tolerant sea urchin fishery in southern California. Ices Journal of Marine Science. 75:1029-1041.   10.1093/icesjms/fsx225   AbstractWebsite

Marine fishery stakeholders are beginning to consider and implement adaptation strategies in the face of growing consumer demand and potential deleterious climate change impacts such as ocean warming, ocean acidification, and deoxygenation. This study investigates the potential for development of a novel climate change-tolerant sea urchin fishery in southern California based on Strongylocentrotus fragilis (pink sea urchin), a deep-sea species whose peak density was found to coincide with a current trap-based spot prawn fishery (Pandalus platyceros) in the 200-300-m depth range. Here we outline potential criteria for a climate change-tolerant fishery by examining the distribution, life-history attributes, and marketable qualities of S. fragilis in southern California. We provide evidence of seasonality of gonad production and demonstrate that peak gonad production occurs in the winter season. S. fragilis likely spawns in the spring season as evidenced by consistent minimum gonad indices in the spring/summer seasons across 4 years of sampling (2012-2016). The resiliency of S. fragilis to predicted future increases in acidity and decreases in oxygen was supported by high species abundance, albeit reduced relative growth rate estimates at water depths (485-510 m) subject to low oxygen (11.7-16.9 mmol kg similar to 1) and pHTotal (< 7.44), which may provide assurances to stakeholders and managers regarding the suitability of this species for commercial exploitation. Some food quality properties of the S. fragilis roe (e. g. colour, texture) were comparable with those of the commercially exploited shallow-water red sea urchin (Mesocentrotus franciscanus), while other qualities (e. g. 80% reduced gonad size by weight) limit the potential future marketability of S. fragilis. This case study highlights the potential future challenges and drawbacks of climate-tolerant fishery development in an attempt to inform future urchin fishery stakeholders.