Publications

Export 6 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G [H] I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
H
Hansman, RL, Thurber AR, Levin LA, Aluwihare LI.  2017.  Methane fates in the benthos and water column at cold seep sites along the continental margin of Central and North America. Deep-Sea Research Part I-Oceanographic Research Papers. 120:122-131.   10.1016/j.dsr.2016.12.016   AbstractWebsite

The potential influence of methane seeps on carbon cycling is a key question for global assessments, but the study of carbon cycling in surface sediments and the water column of cold seep environments is complicated by the high temporal and spatial variability of fluid and gas fluxes at these sites. In this study we directly examined carbon sources supporting benthic and planktonic food webs at venting methane seeps using isotopic and molecular approaches that integrate this variability. At four seep environments located along North and Central America, microorganisms from two size fractions were collected over several days from 2800 to 90501 of seawater to provide a time-integrated measure of key microbial groups and the carbon sources supporting the overall planktonic microbial community. In addition to water column measurements, the extent of seafloor methane release was estimated at two of the sites by examining the stable carbon isotopic signature (delta C-13) of benthic metazoan infauna. This signature reveals carbon sources fueling the base of the food chain and thus provides a metric that represents a time-integrated view of the dominant microbial processes within the sediment. The stable carbon isotopic composition of microbial DNA (delta C-13-DNA), which had values between -17.0 and -19.5%(0), indicated that bulk planktonic microbial production was not ultimately linked to methane or other C-13-depleted seep-derived carbon sources. Instead these data support the importance of organic carbon derived from either photo- or chemoautotrophic CO2 fixation to the planktonic food web. Results of qPCR of microbial DNA sequences coding for a subunit of the particulate methane monooxygenase gene (pmoA) showed that only a small percentage of the planktonic microbial community were potential methane oxidizers possessing pmoA (< 5% of 16S rRNA gene copies). There was an overall decrease of C-13-depleted carbon fueling the benthic metazoan community from 3 to 5 cm below the seafloor to the sediment surface, reflecting limited use of isotopically depleted carbon at the sediment surface. Rare methane emission as indicated by limited aerobic methane oxidation acts to corroborate our findings for the planktonic microbial community.

Hartmann, AC, Levin LA.  2012.  Conservation concerns in the deep. Science. 336:668-669. AbstractWebsite
n/a
Helly, JJ, Levin LA.  2004.  Global distribution of naturally occurring marine hypoxia on continental margins. Deep-Sea Research Part I-Oceanographic Research Papers. 51:1159-1168.   10.1016/j.dsr.2004.03.009   AbstractWebsite

Hypoxia in the ocean influences biogeochemical cycling of elements, the distribution of marine species and the economic well being of many coastal countries. Previous delineations of hypoxic environments focus on those in enclosed seas where hypoxia may be exacerbated by anthropogenically induced eutrophication. Permanently hypoxic water masses in the open ocean, referred to as oxygen minimum zones, impinge on a much larger seafloor surface area along continental margins of the eastern Pacific, Indian and western Atlantic Oceans. We provide the first global quantification of naturally hypoxic continental margin floor by determining upper and lower oxygen minimum zone depth boundaries from hydrographic data and computing the area between the isobaths using seafloor topography. This approach reveals that there are over one million km(2) of permanently hypoxic shelf and bathyal sea floor, where dissolved oxygen is <0.5ml l(-1); over half (59%) occurs in the northern Indian Ocean. We also document strong variation in the intensity, vertical position and thickness of the OMZ as a function of latitude in the eastern Pacific Ocean and as a function of longitude in the northern Indian Ocean. Seafloor OMZs are regions of low biodiversity and are inhospitable to most commercially valuable marine resources, but support a fascinating array of protozoan and metazoan adaptations to hypoxic conditions. (C) 2004 Elsevier Ltd. All rights reserved.

Hofmann, GE, Smith JE, Johnson KS, Send U, Levin LA, Micheli F, Paytan A, Price NN, Peterson B, Takeshita Y, Matson PG, Crook ED, Kroeker KJ, Gambi MC, Rivest EB, Frieder CA, Yu PC, Martz TR.  2011.  High-Frequency Dynamics of Ocean pH: A Multi-Ecosystem Comparison. Plos One. 6   10.1371/journal.pone.0028983   AbstractWebsite

The effect of Ocean Acidification (OA) on marine biota is quasi-predictable at best. While perturbation studies, in the form of incubations under elevated pCO(2), reveal sensitivities and responses of individual species, one missing link in the OA story results from a chronic lack of pH data specific to a given species' natural habitat. Here, we present a compilation of continuous, high-resolution time series of upper ocean pH, collected using autonomous sensors, over a variety of ecosystems ranging from polar to tropical, open-ocean to coastal, kelp forest to coral reef. These observations reveal a continuum of month-long pH variability with standard deviations from 0.004 to 0.277 and ranges spanning 0.024 to 1.430 pH units. The nature of the observed variability was also highly site-dependent, with characteristic diel, semi-diurnal, and stochastic patterns of varying amplitudes. These biome-specific pH signatures disclose current levels of exposure to both high and low dissolved CO2, often demonstrating that resident organisms are already experiencing pH regimes that are not predicted until 2100. Our data provide a first step toward crystallizing the biophysical link between environmental history of pH exposure and physiological resilience of marine organisms to fluctuations in seawater CO2. Knowledge of this spatial and temporal variation in seawater chemistry allows us to improve the design of OA experiments: we can test organisms with a priori expectations of their tolerance guardrails, based on their natural range of exposure. Such hypothesis-testing will provide a deeper understanding of the effects of OA. Both intuitively simple to understand and powerfully informative, these and similar comparative time series can help guide management efforts to identify areas of marine habitat that can serve as refugia to acidification as well as areas that are particularly vulnerable to future ocean change.

Hughes, DJ, Lamont PA, Levin LA, Packer M, Feeley K, Gage JD.  2009.  Macrofaunal communities and sediment structure across the Pakistan margin Oxygen Minimum Zone, North-East Arabian Sea. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 56:434-448.   10.1016/j.dsr2.2008.05.030   AbstractWebsite

Benthic macrofauna and sediment column features were sampled at five stations along a bathymetric transect (depths 140, 300, 940, 1200, 1850 m) through the Pakistan margin Oxygen Minimum Zone (OMZ) during the 2003 intermonsoon (March-May) and late-post-monsoon (August-October) periods. Objectives were to compare patterns with those described from other OMZs, particularly the Oman margin of the Arabian Sea, in order to assess the relative influence of bottom-water oxygenation and sediment organic content on macrofaunal standing stock and community structure. Macrofaunal density was highest at the 140-m station subject to monsoon-driven shoaling of the OMZ, but there was no elevation of density at the lower OMZ boundary (1200 m). Numbers was extremely low in the OMZ core (300 m) and were not readily explicable from the environmental data. There was no consistent depth-related trend in macrofaunal biomass. Macrofaunal densities were consistently lower than found off Oman but there was less contrast in biomass. A significant post-monsoon decline in macrofaunal density at 140 m was driven by selective loss of polychaete taxa. Polychaeta was the most abundant major taxon at all stations but did not dominate the macrofaunal community to the extent reported from Oman. Cirratulidae and Spionidae were major components of the polychaete fauna at most stations but Acrocirridae, Ampharetidae, Amphinomidae and Cossuridae were more important at 940 m. Polychaete assemblages at each station were almost completely distinct at the species level. Polychaete species richness was positively correlated with bottom-water dissolved oxygen and negatively correlated with sediment TOC, C:N ratio and total phytopigments. Community dominance showed the opposite pattern. The strongly inverse correlation between oxygen and measures of sediment organic content made it difficult to distinguish their relative effects. The strongly laminated sediments in the OMZ core contrasted with the homogeneous, heavily bioturbated sediments above and below this zone but were associated with minimal macrofaunal biomass rather than distinctive functional group composition. In general, data from the Oman margin were weak predictors of patterns seen off Pakistan, and results suggest the importance of local factors superimposed on the broader trends of macrofaunal community composition in OMZs. (C) 2008 Elsevier Ltd. All rights reserved.

Hunter, WR, Levin LA, Kitazato H, Witte U.  2012.  Macrobenthic assemblage structure and organismal stoichiometry control faunal processing of particulate organic carbon and nitrogen in oxygen minimum zone sediments. Biogeosciences. 9:993-1006.   10.5194/bg-9-993-2012   AbstractWebsite

The Arabian Sea oxygen minimum zone (OMZ) impinges on the western Indian continental margin between 150 and 1500 m, causing gradients in oxygen availability and sediment geochemistry at the sea floor. Oxygen availability and sediment geochemistry are important factors structuring macrofaunal assemblages in marine sediments. However, relationships between macrofaunal assemblage structure and sea-floor carbon and nitrogen cycling are poorly understood. We conducted in situ C-13:N-15 tracer experiments in the OMZ core (540 m [O-2] = 0.35 mu mol l(-1)) and lower OMZ boundary (800-1100 m, [O-2] = 2.2-15.0 mu mol l(-1)) to investigate how macrofaunal assemblage structure, affected by different oxygen levels, and C:N coupling influence the fate of particulate organic matter. No macrofauna were present in the OMZ core. Within the OMZ boundary, relatively high abundance and biomass resulted in the highest macrofaunal assimilation of particulate organic carbon (POC) and nitrogen (PON) at the lower oxygen 800 m stations ([O-2] = 2.2-2.36 mu mol l(-1)). At these stations the numerically dominant cirratulid polychaetes exhibited greatest POC and PON uptake. By contrast, at the higher oxygen 1100 m station ([O-2] = 15.0 mu mol l(-1)) macrofaunal C and N assimilation was lower, with POC assimilation dominated by one large solitary ascidian. Macrofaunal POC and PON assimilation were influenced by changes in oxygen availability, and significantly correlated to differences in macrofaunal assemblage structure between stations. However, macrofaunal feeding responses were ultimately characterised by preferential organic nitrogen assimilation, relative to their internal C:N budgets.