Publications

Export 28 results:
Sort by: Author [ Title  (Asc)] Type Year
[A] B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
B
Blair, NE, Levin LA, Demaster DJ, Plaia G, Martin C, Fornes W, Thomas C, Pope R.  2001.  The biogeochemistry of carbon in continental slope sediments. Organism-sediment Interactions. ( Aller JY, Woodin S, Aller RC, Belle W. Baruch Institute for Marine Biology and Coastal Research. , Eds.).:243-262., Columbia: Published for the Belle W. Baruch Insitute for Marine Biology and Coastal Research by the University of South Carolina Press Abstract
n/a
Mora, C, Wei CL, Rollo A, Amaro T, Baco AR, Billett D, Bopp L, Chen Q, Collier M, Danovaro R, Gooday AJ, Grupe BM, Halloran PR, Ingels J, Jones DOB, Levin LA, Nakano H, Norling K, Ramirez-Llodra E, Rex M, Ruhl HA, Smith CR, Sweetman AK, Thurber AR, Tjiputra JF, Usseglio P, Watling L, Wu TW, Yasuhara M.  2013.  Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. Plos Biology. 11   10.1371/journal.pbio.1001682   AbstractWebsite

Ongoing greenhouse gas emissions can modify climate processes and induce shifts in ocean temperature, pH, oxygen concentration, and productivity, which in turn could alter biological and social systems. Here, we provide a synoptic global assessment of the simultaneous changes in future ocean biogeochemical variables over marine biota and their broader implications for people. We analyzed modern Earth System Models forced by greenhouse gas concentration pathways until 2100 and showed that the entire world's ocean surface will be simultaneously impacted by varying intensities of ocean warming, acidification, oxygen depletion, or shortfalls in productivity. In contrast, only a small fraction of the world's ocean surface, mostly in polar regions, will experience increased oxygenation and productivity, while almost nowhere will there be ocean cooling or pH elevation. We compiled the global distribution of 32 marine habitats and biodiversity hotspots and found that they would all experience simultaneous exposure to changes in multiple biogeochemical variables. This superposition highlights the high risk for synergistic ecosystem responses, the suite of physiological adaptations needed to cope with future climate change, and the potential for reorganization of global biodiversity patterns. If co-occurring biogeochemical changes influence the delivery of ocean goods and services, then they could also have a considerable effect on human welfare. Approximately 470 to 870 million of the poorest people in the world rely heavily on the ocean for food, jobs, and revenues and live in countries that will be most affected by simultaneous changes in ocean biogeochemistry. These results highlight the high risk of degradation of marine ecosystems and associated human hardship expected in a future following current trends in anthropogenic greenhouse gas emissions.

C
Mengerink, KJ, Vandover CL, Ardron J, Baker M, Escobar-Briones E, Gjerde K, Koslow J, Ramirez-Llodra E, Lara-Lopez A, Squires D, Sutton T, Sweetman A, Levin LA.  2014.  A Call For Deep-Ocean Stewardship. Science. 344:696-698.
Basak, C, Rathburn AE, Perez ME, Martin JB, Kluesner JW, Levin LA, De Deckker P, Gieskes JM, Abriani M.  2009.  Carbon and oxygen isotope geochemistry of live (stained) benthic foraminifera from the Aleutian Margin and the Southern Australian Margin. Marine Micropaleontology. 70:89-101.   10.1016/j.marmicro.2008.11.002   AbstractWebsite

Comparisons of ambient bottom-water geochemistry and stable isotopic values of the tests of living (stained) calcareous benthic foraminifera from the North Pacific (on the Aleutian Margin, water depth 1988 m) and Murray Canyons group in the Southern Indian Ocean (Australian Margin, water depths 2476 m and 1634 m) provide modem environmental analogs to calibrate paleoenvironmental assessments. Consistent with the hypothesis that microhabitat preferences influence foraminiferal isotopic values, benthic foraminifera from both margins were depleted in (13)C with respect to bottom-water dissolved inorganic carbon (DIC). The carbon isotope values of deep infaunal foraminifera (Chilostomella oolina, Globobulimina pacifica) showed greater differences from estimates of those of DIC than shallow benthic foraminifera (Bulimina mexicana, Bolivinita quadrilatera, Pullenia bulloides). This study provides new isotopic and ecological information for B. quadrilatera. The mean Delta delta(13)C value, defined as foraminiferal delta(13)C values minus estimated ambient delta(13)C values from the Aleutian Margin, is 0.97 parts per thousand higher for G. pacifica than the mean from the Murray Canyon. This difference may result either from genetic or biological differences between the populations or from differences in environmental isotopic influences (such as pore water differences) that were not accounted for in the equilibrium calculations. These analyses provide calibration information for the evaluation of bottom water conditions and circulation patterns of ancient oceans based on fossil foraminiferal geochemistry. (C) 2008 Elsevier B.V. All rights reserved.

Springer, AE, Stevens LE, Anderson DE, Partnell RA, Kreamer DK, Levin LA, Flora S.  2008.  A comprehensive springs classification system. Integrating geomorphic, hydrogeochemical, and ecological criteria. Aridland springs in North America: ecology and conservation. ( Stevens LE, Meretsky VJ, Eds.).:49-75., Tucson: University of Arizona Press and the Arizona-Sonora Desert Museum Abstract
n/a
D
Ramirez-Llodra, E, Brandt A, Danovaro R, De Mol B, Escobar E, German CR, Levin LA, Arbizu PM, Menot L, Buhl-Mortensen P, Narayanaswamy BE, Smith CR, Tittensor DP, Tyler PA, Vanreusel A, Vecchione M.  2010.  Deep, diverse and definitely different: unique attributes of the world's largest ecosystem. Biogeosciences. 7:2851-2899.   10.5194/bg-7-2851-2010   AbstractWebsite

The deep sea, the largest biome on Earth, has a series of characteristics that make this environment both distinct from other marine and land ecosystems and unique for the entire planet. This review describes these patterns and processes, from geological settings to biological processes, biodiversity and biogeographical patterns. It concludes with a brief discussion of current threats from anthropogenic activities to deep-sea habitats and their fauna. Investigations of deep-sea habitats and their fauna began in the late 19th century. In the intervening years, technological developments and stimulating discoveries have promoted deep-sea research and changed our way of understanding life on the planet. Nevertheless, the deep sea is still mostly unknown and current discovery rates of both habitats and species remain high. The geological, physical and geochemical settings of the deep-sea floor and the water column form a series of different habitats with unique characteristics that support specific faunal communities. Since 1840, 28 new habitats/ecosystems have been discovered from the shelf break to the deep trenches and discoveries of new habitats are still happening in the early 21st century. However, for most of these habitats the global area covered is unknown or has been only very roughly estimated; an even smaller - indeed, minimal - proportion has actually been sampled and investigated. We currently perceive most of the deep-sea ecosystems as heterotrophic, depending ultimately on the flux on organic matter produced in the overlying surface ocean through photosynthesis. The resulting strong food limitation thus shapes deep-sea biota and communities, with exceptions only in reducing ecosystems such as inter alia hydrothermal vents or cold seeps. Here, chemoautolithotrophic bacteria play the role of primary producers fuelled by chemical energy sources rather than sunlight. Other ecosystems, such as seamounts, canyons or cold-water corals have an increased productivity through specific physical processes, such as topographic modification of currents and enhanced transport of particles and detrital matter. Because of its unique abiotic attributes, the deep sea hosts a specialized fauna. Although there are no phyla unique to deep waters, at lower taxonomic levels the composition of the fauna is distinct from that found in the upper ocean. Amongst other characteristic patterns, deep-sea species may exhibit either gigantism or dwarfism, related to the decrease in food availability with depth. Food limitation on the seafloor and water column is also reflected in the trophic structure of heterotrophic deep-sea communities, which are adapted to low energy availability. In most of these heterotrophic habitats, the dominant megafauna is composed of detritivores, while filter feeders are abundant in habitats with hard substrata (e. g. mid-ocean ridges, seamounts, canyon walls and coral reefs). Chemoautotrophy through symbiotic relationships is dominant in reducing habitats. Deep-sea biodiversity is among of the highest on the planet, mainly composed of macro and meiofauna, with high evenness. This is true for most of the continental margins and abyssal plains with hot spots of diversity such as seamounts or cold-water corals. However, in some ecosystems with particularly "extreme" physicochemical processes (e.g. hydrothermal vents), biodiversity is low but abundance and biomass are high and the communities are dominated by a few species. Two large-scale diversity patterns have been discussed for deep-sea benthic communities. First, a unimodal relationship between diversity and depth is observed, with a peak at intermediate depths (2000-3000 m), although this is not universal and particular abiotic processes can modify the trend. Secondly, a poleward trend of decreasing diversity has been discussed, but this remains controversial and studies with larger and more robust data sets are needed. Because of the paucity in our knowledge of habitat coverage and species composition, biogeographic studies are mostly based on regional data or on specific taxonomic groups. Recently, global biogeographic provinces for the pelagic and benthic deep ocean have been described, using environmental and, where data were available, taxonomic information. This classification described 30 pelagic provinces and 38 benthic provinces divided into 4 depth ranges, as well as 10 hydrothermal vent provinces. One of the major issues faced by deep-sea biodiversity and biogeographical studies is related to the high number of species new to science that are collected regularly, together with the slow description rates for these new species. Taxonomic coordination at the global scale is particularly difficult, but is essential if we are to analyse large diversity and biogeographic trends. Because of their remoteness, anthropogenic impacts on deep-sea ecosystems have not been addressed very thoroughly until recently. The depletion of biological and mineral resources on land and in shallow waters, coupled with technological developments, are promoting the increased interest in services provided by deep-water resources. Although often largely unknown, evidence for the effects of human activities in deep-water ecosystems - such as deep-sea mining, hydrocarbon exploration and exploitation, fishing, dumping and littering - is already accumulating. Because of our limited knowledge of deep-sea biodiversity and ecosystem functioning and because of the specific life-history adaptations of many deep-sea species (e. g. slow growth and delayed maturity), it is essential that the scientific community works closely with industry, conservation organisations and policy makers to develop robust and efficient conservation and management options.

Niner, HJ, Ardron JA, Escobar EG, Gianni M, Jaeckel A, Jones DOB, Levin LA, Smith CR, Thiele T, Turner PJ, Vandover CL, Watling L, Gjerde KM.  2018.  Deep-sea mining with no net loss of biodiversity-an impossible aim. Frontiers in Marine Science. 5   10.3389/fmars.2018.00053   AbstractWebsite

Deep-sea mining is likely to result in biodiversity loss, and the significance of this to ecosystem function is not known. "Out of kind" biodiversity offsets substituting one ecosystem type (e.g., coral reefs) for another (e.g., abyssal nodule fields) have been proposed to compensate for such loss. Here we consider a goal of no net loss (NNL) of biodiversity and explore the challenges of applying this aim to deep seabed mining, based on the associated mitigation hierarchy (avoid, minimize, remediate). We conclude that the industry cannot at present deliver an outcome of NNL. This results from the vulnerable nature of deep-sea environments to mining impacts, currently limited technological capacity to minimize harm, significant gaps in ecological knowledge, and uncertainties of recovery potential of deep-sea ecosystems. Avoidance and minimization of impacts are therefore the only presently viable means of reducing biodiversity losses from seabed mining. Because of these constraints, when and if deep-sea mining proceeds, it must be approached in a precautionary and step-wise manner to integrate new and developing knowledge. Each step should be subject to explicit environmental management goals, monitoring protocols, and binding standards to avoid serious environmental harm and minimize loss of biodiversity. "Out of kind" measures, an option for compensation currently proposed, cannot replicate biodiversity and ecosystem services lost through mining of the deep seabed and thus cannot be considered true offsets. The ecosystem functions provided by deep-sea biodiversity contribute to a wide range of provisioning services (e.g., the exploitation of fish, energy, pharmaceuticals, and cosmetics), play an essential role in regulatory services (e.g., carbon sequestration) and are important culturally. The level of "acceptable" biodiversity loss in the deep sea requires public, transparent, and well-informed consideration, as well as wide agreement. If accepted, further agreement on how to assess residual losses remaining after the robust implementation of the mitigation hierarchy is also imperative. To ameliorate some of the inter-generational inequity caused by mining-associated biodiversity losses, and only after all NNL measures have been used to the fullest extent, potential compensatory actions would need to be focused on measures to improve the knowledge and protection of the deep sea and to demonstrate benefits that will endure for future generations.

Levin, LA, Mengerink K, Gjerde KM, Rowden AA, Vandover CL, Clark MR, Ramirez-Llodra E, Currie B, Smith CR, Sato KN, Gallo N, Sweetman AK, Lily H, Armstrong CW, Brider J.  2016.  Defining "serious harm" to the marine environment in the context of deep-seabed mining. Marine Policy. 74:245-259.   10.1016/j.marpol.2016.09.032   AbstractWebsite

Increasing interest in deep-seabed mining has raised many questions surrounding its potential environmental impacts and how to assess the impacts' significance. Under the United Nations Convention on the Law of the Sea (UNCLOS), the International Seabed Authority (ISA) is charged with ensuring effective protection of the marine environment as part of its responsibilities for managing mining in seabed areas beyond national jurisdiction (the Area) on behalf of humankind. This paper examines the international legal context for protection of the marine environment and defining the significant adverse change that can cause "serious harm", a term used in the ISA Mining Code to indicate a level of harm that strong actions must be taken to avoid. It examines the thresholds and indicators that can reflect significant adverse change and considers the specific vulnerability of the four ecosystems associated with the minerals targeted for mining: (1) manganese (polymetallic) nodules, (2) seafloor massive (polymetallic) sulphides, (3) cobalt-rich (polymetallic) crusts and (4) phosphorites. The distributions and ecological setting, probable mining approaches and the potential environmental impacts of mining are examined for abyssal polymetallic nodule provinces, hydrothermal vents, seamounts and phosphorite-rich continental margins. Discussion focuses on the special features of the marine environment that affect the significance of the predicted environmental impacts and suggests actions that will advance understanding of these impacts.

Vandover, CL, Smith CR, Ardron J, Dunn D, Gjerde K, Levin L, Smith S, Dinard Workshop C.  2012.  Designating networks of chemosynthetic ecosystem reserves in the deep sea. Marine Policy. 36:378-381.   10.1016/j.marpol.2011.07.002   AbstractWebsite

From the moment of their discovery, chemosynthetic ecosystems in the deep sea have held intrinsic scientific value. At the same time that the scientific community is studying chemosynthetic ecosystems other sectors are either engaged in, or planning for, activities that may adversely impact these ecosystems. There is a need and opportunity now to develop conservation strategies for networks of chemosynthetic ecosystem reserves in national and international waters through collaboration among concerned stakeholders. (C) 2011 Elsevier Ltd. All rights reserved.

E
Levin, LA.  2005.  Ecology of cold seep sediments: Interactions of fauna with flow, chemistry and microbes. Oceanography and Marine Biology - an Annual Review, Vol. 43. 43( Gibson RN, Atkinson RJA, Gordon JDM, Eds.).:1-46., Boca Raton: Crc Press-Taylor & Francis Group Abstract

Cold seeps occur in geologically active and passive continental margins, where pore waters enriched in methane are forced upward through the sediments by pressure gradients. The advective supply of methane leads to dense microbial communities with high metabolic rates. Anaerobic methane oxidation presumably coupled to sulphate reduction facilitates formation of carbonates and, in many places, generates extremely high concentrations of hydrogen sulphide in pore waters. Increased food supply, availability of hard substratum and high concentrations of methane and sulphide supplied to free-living and symbiotic bacteria provide the basis for the complex ecosystems found at these sites. This review examines the structures of animal communities in seep sediments and how they are shaped by hydrologic, geochemical and microbial processes. The full size range of biota is addressed but emphasis is on the mid-size sediment-dwelling infauna (foraminiferans, metazoan meiofauna and macrofauna), which have received less attention than megafauna or microbes. Megafaunal biomass at seeps, which far exceeds that of surrounding non-seep sediments, is dominated by bivalves (mytilids, vesicomyids, lucinids and thyasirids) and vestimentiferan tube worms, with pogonophorans, cladorhizid sponges, gastropods and shrimp sometimes abundant. In contrast, seep sediments at shelf and upper slope depths have infaunal densities that often differ very little from those in ambient sediments. At greater depths, seep infauna exhibit enhanced densities, modified composition and reduced diversity relative to background sediments. Dorvilleid, hesionid and ampharetid polychaetes, nematodes, and calcareous foraminiferans are dominant. There is extensive spatial heterogeneity of microbes and higher organisms at seeps. Specialized infaunal communities are associated with different seep habitats (microbial mats, clam beds, mussel beds and tube worms aggregations) and with different vertical zones in the sediment. Whereas fluid flow and associated porewater properties, in particular sulphide concentration, appear to regulate the distribution, physiological adaptations and sometimes behaviour of many seep biota, sometimes the reverse is true. Animal-microbe interactions at seeps are complex and involve symbioses, heterotrophic nutrition, geochemical feedbacks and habitat structure. Nutrition of seep fauna varies, with thiotrophic and methanotrophic symbiotic bacteria fueling most of the megafaunal forms but macrofauna and most meiofauna are mainly heterotrophic. Macrofaunal food sources are largely photosynthesis-based at shallower seeps but reflect carbon fixation by chemosynthesis and considerable incorporation of methane-derived C at deeper seeps. Export of seep carbon appears to be highly localized based on limited studies in the Gulf of Mexico. Seep ecosystems remain one of the ocean's true frontiers. Seep sediments represent some of the most extreme marine conditions and offer unbounded opportunities for discovery in the realms of animal-microbe-geochemical interactions, physiology, trophic ecology, biogeography, systematics and evolution.

Arntz, WE, Gallardo VA, Gutierrez D, Isla E, Levin LA, Mendo J, Neira C, Rowe GT, Tarazona J, Wolff M.  2006.  El Niño and similar perturbation effects on the benthos of the Humboldt, California, and Benguela Current upwelling ecosystems. Advances in Geosciences. 6:243-265.: European Geosciences Union, c/o E.O.S.T. 5, rue Rene Descartes Strasbourg Cedex 67084 France, [mailto:egu.production@copernicus.org], [URL:http://www.copernicus.org/EGU] AbstractWebsite

To a certain degree, Eastern Boundary Current (EBC) ecosystems are similar: Cold bottom water from moderate depths, rich in nutrients, is transported to the euphotic zone by a combination of trade winds, Coriolis force and Ekman transport. The resultant high primary production fuels a rich secondary production in the upper pelagic and nearshore zones, but where O sub(2) exchange is restricted, it creates oxygen minimum zones (OMZs) at shelf and upper slope (Humboldt and Benguela Current) or slope depths (California Current). These hypoxic zones host a specifically adapted, small macro- and meiofauna together with giant sulphur bacteria that use nitrate to oxydise H sub(2)S. In all EBC, small polychaetes, large nematodes and other opportunistic benthic species have adapted to the hypoxic conditions and co-exist with sulphur bacteria, which seem to be particularly dominant off Peru and Chile. However, a massive reduction of macrobenthos occurs in the core of the OMZ. In the Humboldt Current area the OMZ ranges between <100 and about 600 m, with decreasing thickness in a poleward direction. The OMZ merges into better oxygenated zones towards the deep sea, where large cold-water mega- and macrofauna occupy a dominant role as in the nearshore strip. The Benguela Current OMZ has a similar upper limit but remains shallower. It also hosts giant sulphur bacteria but little is known about the benthic fauna. However, sulphur eruptions and intense hypoxia might preclude the coexistence of significant mega- und macrobenthos. Conversely, off North America the upper limit of the OMZ is considerably deeper (e.g., 500-600 m off California and Oregon), and the lower boundary may exceed 1000m. The properties described are valid for very cold and cold (La Nina and "normal") ENSO conditions with effective upwelling of nutrient-rich bottom water. During warm (El Nino) episodes, warm water masses of low oxygen concentration from oceanic and equatorial regions enter the upwelling zones, bringing a variety of (sub)tropical immigrants. The autochthonous benthic fauna emigrates to deeper water or poleward, or suffers mortality. However, some local macrofaunal species experience important population proliferations, presumably due to improved oxygenation (in the southern hemisphere), higher temperature tolerance, reduced competition or the capability to use different food. Both these negative and positive effects of el Nino influence local artisanal fisheries and the livelihood of coastal populations. In the Humboldt Current system the hypoxic seafloor at outer shelf depths receives important flushing from the equatorial zone, causing havoc on the sulphur bacteria mats and immediate recolonisation of the sediments by mega- and macrofauna. Conversely, off California, the intruding equatorial water masses appear to have lower oxygen than ambient waters, and may cause oxygen deficiency at upper slope depths. Effects of this change have not been studied in detail, although shrimp and other taxa appear to alter their distribution on the continental margin. Other properties and reactions of the two Pacific EBC benthic ecosystems to el Nino seem to differ, too, as does the overall impact of major episodes (e.g., 1982/1983(1984) vs. 1997/1998). The relation of the "Benguela Nino" to ENSO seems unclear although many Pacific- Atlantic ocean and atmosphere teleconnections have been described. Warm, low- oxygen equatorial water seems to be transported into the upwelling area by similar mechanisms as in the Pacific, but most major impacts on the eukaryotic biota obviously come from other, independent perturbations such as an extreme eutrophication of the sediments ensuing in sulphidic eruptions and toxic algal blooms. Similarities and differences of the Humboldt and California Current benthic ecosystems are discussed with particular reference to ENSO impacts since 1972/73. Where there are data available, the authors include the Benguela Current ecosystem as another important, non-Pacific EBC, which also suffers from the effects of hypoxia.

F
AK, S, LA L, HT R, C S.  2013.  Faunal trophic structure at hydrothermal vents on the southern Mohn’s Ridge, Arctic Ocean. Marine Ecology Progress Series. 473:115-131.   10.3354/meps10050   AbstractWebsite

We explore the trophic ecology of heterotrophic fauna associated with a high temperature (HT) vent, 2 low temperature vents, a ‘near-HT vent’ habitat and a non-vent site situated at upper bathyal depths on the southern Mohn’s Ridge in the Arctic Ocean. Only a single taxon (the gastropod Pseudosetia griegi) was found at the high temperature vent habitat. Their mean δ13C values were significantly lighter than conspecifics from a low temperature vent habitat within the same vent field, reflecting the incorporation of sulfide oxidizing bacteria into the biomass of the animals. The majority of fauna from the low temperature, near-HT, and non-vent habitats had isotopic signatures indicative of assimilation of photosynthetic material. However, we found remarkably diverse isotopic compositions among the fauna sampled here, with a small sub-set of fauna at each site possessing C and N isotopic signatures indicative of incorporation of chemosynthetic production. Moreover, when isotopic signatures of similar taxa were compared from the same sample, δ13C signatures suggested a high degree of trophic complexity can exist over relatively small spatial scales at vent habitats on the southern Mohn’s Ridge. The high contribution of photosynthetic food material to faunal diets and variability in food types may result from the upper bathyal venting depth and sedimentary nature of the vents. We hypothesize that the upper bathyal depth of active venting may lead to iron enhancement of surface photosynthetic production, especially in high nutrient areas, which ultimately sinks to the seabed where it is incorporated by fauna around the vents.

Askarizadeh, A, Rippy MA, Fletcher TD, Feldman DL, Peng J, Bowler P, Mehring AS, Winfrey BK, Vrugt JA, AghaKouchak A, Jiang SC, Sanders BF, Levin LA, Taylor S, Grant SB.  2015.  From rain tanks to catchments: Use of low-impact development to address hydrologic symptoms of the urban stream syndrome. Environmental Science & Technology. 49:11264-11280.   10.1021/acs.est.5b01635   AbstractWebsite

Catchment urbanization perturbs the water and sediment budgets of streams, degrades stream health and function, and causes a constellation of flow, water quality, and ecological symptoms collectively known as the urban stream syndrome. Low-impact development (LID) technologies address the hydrologic symptoms of the urban stream syndrome by mimicking natural flow paths and restoring a natural water balance. Over annual time scales, the volumes of stormwater that should be infiltrated and harvested can be estimated from a catchment-scale water-balance given local climate conditions and preurban land cover. For all but the wettest regions of the world, a much larger volume of stormwater runoff should be harvested than infiltrated to maintain stream hydrology in a preurban state. Efforts to prevent or reverse hydrologic symptoms associated with the urban stream syndrome will therefore require: (1) selecting the right mix of LID technologies that provide regionally tailored ratios of stormwater harvesting and infiltration; (2) integrating these LID technologies into next-generation drainage systems; (3) maximizing potential cobenefits including water supply augmentation, flood protection, improved water quality, and urban amenities; and (4) long-term hydrologic monitoring to evaluate the efficacy of LID interventions.

G
Rathburn, AE, Levin LA, Tryon M, Gieskes JM, Martin JM, Perez ME, Fodrie FJ, Neira C, Fryer GJ, Mendoza G, McMillan PA, Kluesner J, Adamic J, Ziebis W.  2009.  Geological and biological heterogeneity of the Aleutian margin (1965-4822 m). Progress in Oceanography. 80:22-50.   10.1016/j.pocean.2008.12.002   AbstractWebsite

Geological, biological and biogeochemical characterization of the previously unexplored margin off Unimak Island, Alaska between 1965 and 4822 m water depth was conducted to examine: (1) the geological processes that shaped the margin, (2) the linkages between depth, geomorphology and environmental disturbance in structuring benthic communities of varying size classes and (3) the existence, composition and nutritional sources of methane seep biota on this margin. The study area was mapped and sampled using multibeam sonar, a remotely operated vehicle (ROV) and a towed camera system. Our results provide the first characterization of the Aleutian margin mid and lower slope benthic communities (micro-biota, foraminifera, macrofauna and megafauna), recognizing diverse habitats in a variety of settings. Our investigations also revealed that the geologic feature known as the "Ugamak Slide" is not a slide at all, and could not have resulted from a large 1946 earthquake. However, sediment disturbance appears to be a pervasive feature of this margin. We speculate that the deep-sea occurrence of high densities of Elphidium, typically a shallow-water foraminiferan, results from the influence of sediment redeposition from shallower habitats. Strong representation of cumacean, amphipod and tanaid crustaceans among the Unimak macrofauna may also reflect sediment instability. Although some faunal abundances decline with depth, habitat heterogeneity and disturbance generated by canyons and methane seepage appear to influence abundances of biota in ways that supercede any clear depth gradient in organic matter input. Measures of sediment organic matter and pigment content as well as C and N isotopic signatures were highly heterogeneous, although the availability of organic matter and the abundance of microorganisms in the upper sediment (1-5 cm) were positively correlated. We report the first methane seep on the Aleutian slope in the Unimak region (3263-3285 m), comprised of clam bed, pogonophoran field and carbonate habitats. Seep foraminiferal assemblages were dominated by agglutinated taxa, except for habitats above the seafloor on pogonophoran tubes. Numerous infaunal taxa in clam bed and pogonophoran field sediments and deep-sea "reef' cnidarians (e.g., corals and hydroids) residing on rocks near seepage sites exhibited light organic delta(13)C signatures indicative of chemosynthetic nutritional sources. The extensive geological, biogeochemical and biological heterogeneity as well as disturbance features observed on the Aleutian slope provide an attractive explanation for the exceptionally high biodiversity characteristic of the world's continental margins. (C) 2008 Elsevier Ltd. All rights reserved.

M
Neira, C, Sellanes J, Levin LA, Arntz WE.  2001.  Meiofaunal distributions on the Peru margin: relationship to oxygen and organic matter availability. Deep-Sea Research Part I-Oceanographic Research Papers. 48:2453-2472.   10.1016/s0967-0637(01)00018-8   AbstractWebsite

A quantitative study of metazoan meiofauna was carried out on bathyal sediments (305, 562, 830 and 1210 m) along a transect within and beneath the oxygen minimum zone (OMZ) in the southeastern Pacific off Callao, Peru (12 degreesS). Meiobenthos densities ranged from 1517 (upper slope, middle of OMZ) to 440-548 ind. 10cm(-2) (lower slope stations, beneath the OMZ). Nematodes were the numerically dominant meiofaunal taxon at every station, followed by copepods and nauplii. Increasing bottom-water oxygen concentration and decreasing organic matter availability downslope were correlated with observed changes in meiofaunal abundance. The 300-m site, located in the middle of the OMZ, differed significantly in meiofaunal abundance, dominance, and in vertical distribution pattern from the deeper sites. At 305 m, nematodes amounted to over 99% of total meiofauna; about 70% of nematodes were found in the 2-5 cm. interval. At the deeper sites, about 50% were restricted to the top I cm. The importance of copepods and nauplii increased consistently with depth, reaching similar to 12% of the total meiofauna at the deepest site. The observation of high nematode abundances at oxygen concentrations <0.02mll(-1) supports the hypothesis that densities are enhanced by an indirect positive effect of low oxygen involving (a) reduction of predators and competitors and (b) preservation of organic matter leading to high food availability and quality. Food input and quality, represented here by chloroplastic pigment equivalents (CPE) and sedimentary labile organic compounds (protein, carbohydrates and lipids), were strongly, positively correlated with nematode abundance. By way of contrast, oxygen exhibited a strong negative correlation, overriding food availability, with abundance of other meiofauna such as copepods and nauplii. These taxa were absent at the 300-m site. The high correlation of labile organic matter (C-LOM, sum of carbon contents in lipids, proteins and carbohydrates) with CPE (Pearson's r = 0.99, p <0.01) suggests that most of the sedimentary organic material sampled was of phytodetrital origin. The fraction of sediment organic carbon potentially available to benthic. heterotrophs, measured as C-LOM/Total organic carbon, was on average 17% at all stations. Thus, a residual, refractory fraction, constitutes the major portion of organic matter at the studied bathyal sites. (C) 2001 Elsevier Science Ltd. All rights reserved.

Hansman, RL, Thurber AR, Levin LA, Aluwihare LI.  2017.  Methane fates in the benthos and water column at cold seep sites along the continental margin of Central and North America. Deep-Sea Research Part I-Oceanographic Research Papers. 120:122-131.   10.1016/j.dsr.2016.12.016   AbstractWebsite

The potential influence of methane seeps on carbon cycling is a key question for global assessments, but the study of carbon cycling in surface sediments and the water column of cold seep environments is complicated by the high temporal and spatial variability of fluid and gas fluxes at these sites. In this study we directly examined carbon sources supporting benthic and planktonic food webs at venting methane seeps using isotopic and molecular approaches that integrate this variability. At four seep environments located along North and Central America, microorganisms from two size fractions were collected over several days from 2800 to 90501 of seawater to provide a time-integrated measure of key microbial groups and the carbon sources supporting the overall planktonic microbial community. In addition to water column measurements, the extent of seafloor methane release was estimated at two of the sites by examining the stable carbon isotopic signature (delta C-13) of benthic metazoan infauna. This signature reveals carbon sources fueling the base of the food chain and thus provides a metric that represents a time-integrated view of the dominant microbial processes within the sediment. The stable carbon isotopic composition of microbial DNA (delta C-13-DNA), which had values between -17.0 and -19.5%(0), indicated that bulk planktonic microbial production was not ultimately linked to methane or other C-13-depleted seep-derived carbon sources. Instead these data support the importance of organic carbon derived from either photo- or chemoautotrophic CO2 fixation to the planktonic food web. Results of qPCR of microbial DNA sequences coding for a subunit of the particulate methane monooxygenase gene (pmoA) showed that only a small percentage of the planktonic microbial community were potential methane oxidizers possessing pmoA (< 5% of 16S rRNA gene copies). There was an overall decrease of C-13-depleted carbon fueling the benthic metazoan community from 3 to 5 cm below the seafloor to the sediment surface, reflecting limited use of isotopically depleted carbon at the sediment surface. Rare methane emission as indicated by limited aerobic methane oxidation acts to corroborate our findings for the planktonic microbial community.

O
Woulds, C, Cowie GL, Levin LA, Andersson JH, Middelburg JJ, Vandewiele S, Lamont PA, Larkin KE, Gooday AJ, Schumacher S, Whitcraft C, Jeffreys RM, Schwartz M.  2007.  Oxygen as a control on seafloor biological communities and their roles in sedimentary carbon cycling. Limnology and Oceanography. 52:1698-1709.   10.4319/lo.2007.52.4.1698   AbstractWebsite

C-13 tracer experiments were conducted at sites spanning the steep oxygen, organic matter, and biological community gradients across the Arabian Sea oxygen minimum zone, in order to quantify the role that benthic fauna play in the short-term processing of organic matter (OM) and to determine how this varies among different environments. Metazoan macrofauna and macrofauna-sized foraminiferans took up as much as 56 +/- 13 mg of added C m(-2) (685 mg C m(-2) added) over 2-5 d, and at some sites this uptake was similar in magnitude to bacterial uptake and/or total respiration. Bottom-water dissolved oxygen concentrations exerted a strong control over metazoan macrofaunal OM processing. At oxygen concentrations > 7 mu mol L-1 (0.16 ml L-1), metazoan macrofauna were able to take advantage of abundant OM and to dominate OM uptake, while OM processing at O-2 concentrations of 5.0 mu mol L-1 (0.11 ml L-1) was dominated instead by (macrofaunal) foraminiferans. This led us to propose the hypothesis that oxygen controls the relative dominance of metazoan macrofauna and foraminifera in a threshold manner, with the threshold lying between 5 and 7 mu mol L-1 (0.11 to 0.16 ml L-1). Large metazoan macrofaunal biomass and high natural concentrations of OM were also associated with rapid processing of fresh OM by the benthic community. Where they were present, the polychaete Linopherus sp. and the calcareous foraminiferan Uvigerina ex gr. semiornata, dominated the uptake of OM above and below, respectively, the proposed threshold concentrations of bottom-water oxygen.

P
Wishner, KF, Ashjian CJ, Gelfman C, Gowing MM, Kann L, Levin LA, Mullineaux LS, Saltzman J.  1995.  Pelagic and benthic ecology of the lower interface of the Eastern Tropical Pacific oxygen minimum zone. Deep-Sea Research Part I-Oceanographic Research Papers. 42:93-115.   10.1016/0967-0637(94)00021-j   AbstractWebsite

The distributions of pelagic and benthic fauna were examined in relation to the lower boundary of the oxygen minimum zone (OMZ) on and near Volcano 7, a seamount that penetrates this feature in the Eastern Tropical Pacific. Although the broad, pronounced OMZ in this region is an effective barrier for most zooplankton, zooplankton abundances, zooplankton feeding rates, and ambient suspended particulate organic carbon (POC) peaked sharply in the lower OMZ (about 740-800 m), in association with the minimum oxygen concentration and the increasing oxygen levels just below it. Zooplankton in the lower OMZ were also larger in size, and the pelagic community included some very abundant, possibly opportunistic, species. Elevated POC and scatter in the light transmission data suggested the existence of a thin, particle-rich, and carbon-rich pelagic layer at the base of the OMZ. Gut contents of planktonic detritivores implied opportunistic ingestion of bacterial aggregates, possibly from this layer. Benthic megafaunal abundances on the seamount, which extended up to 730 m, peaked at about 800 m. There was a consistent vertical progression in the depth of first occurrence of different megafaunal taxa in this depth range, similar to intertidal zonation. Although the vertical gradients of temperature, salinity, and oxygen were gradual at the lower OMZ interface (in contrast to the upper OMZ interface at the thermocline), temporal variability in oxygen levels due to internal wave-induced vertical excursions of the OMZ may produce the distinct zonation in the benthic fauna. The characteristics of the lower OMZ interface result from biological interactions with the chemical and organic matter gradients of the OMZ. Most zooplankton are probably excluded physiologically from pronounced OMZs. The zooplankton abundance peak at the lower interface of the OMZ occurs where oxygen becomes sufficiently high to permit the zooplankton to utilize the high concentrations of organic particles that have descended through the OMZ relatively unaltered because of low metazoan abundance. A similar scenario applies to megabenthic distributions. Plankton layers and a potential short food chain (bacteria to zooplankton) at OMZ interfaces suggest intense utilization and modification of organic material, localized within a thin midwater depth zone. This could be a potentially significant filter for organic material sinking to the deep-sea floor.

Parker, EA, Rippy MA, Mehring AS, Winfrey BK, Ambrose RF, Levin LA, Grant SB.  2017.  Predictive power of clean bed filtration theory for fecal indicator bacteria removal in stormwater biofilters. Environmental Science & Technology. 51:5703-5712.   10.1021/acs.est.7b00752   AbstractWebsite

Green infrastructure (also referred to as low impact development, or LID) has the potential to transform urban stormwater runoff from an environmental threat to a valuable water resource. In this paper we focus on the removal of fecal indicator bacteria (FIB, a pollutant responsible for runoff associated inland and coastal beach closures) in stormwater biofilters (a common type of green infrastructure). Drawing on a combination of previously published and new laboratory studies of FIB removal in biofilters, we find that 66% of the variance in FIB removal rates can be explained by clean bed filtration theory (CBFT, 31%), antecedent dry period (14%), study effect (8%), biofilter age (7%), and the presence or absence of shrubs (6%). Our analysis suggests that, with the exception of shrubs, plants affect FIB removal indirectly by changing the infiltration rate, not directly by changing the FIB removal mechanisms or altering filtration rates in ways not already accounted for by CBFT. The analysis presented here represents a significant step forward in our understanding of how physicochemical theories (such as CBFT) can be melded with hydrology, engineering design, and ecology to improve the water quality benefits of green infrastructure.

R
Sato, KN, Andersson AJ, Day JMD, Taylor JRA, Frank MB, Jung JY, McKittrick J, Levin LA.  2018.  Response of sea urchin fitness traits to environmental gradients across the Southern California oxygen minimum zone. Frontiers in Marine Science. 5   10.3389/fmars.2018.00258   AbstractWebsite

Marine calcifiers are considered to be among the most vulnerable taxa to climate-forced environmental changes occurring on continental margins with effects hypothesized to occur on microstructural, biomechanical, and geochemical properties of carbonate structures. Natural gradients in temperature, salinity, oxygen, and pH on an upwelling margin combined with the broad depth distribution (100-1,100 m) of the pink fragile sea urchin, Strongylocentrotus (formerly Allocentrotus) fragilis, along the southern California shelf and slope provide an ideal system to evaluate potential effects of multiple climate variables on carbonate structures in situ. We measured, for the first time, trait variability across four distinct depth zones using natural gradients as analogues for species-specific implications of oxygen minimum zone (OMZ) expansion, deoxygenation and ocean acidification. Although S. fragilis may likely be tolerant of future oxygen and pH decreases predicted during the twenty-first century, we determine from adults collected across multiple depth zones that urchin size and potential reproductive fitness (gonad index) are drastically reduced in the OMZ core (450-900 m) compared to adjacent zones. Increases in porosity and mean pore size coupled with decreases in mechanical nanohardness and stiffness of the calcitic endoskeleton in individuals collected from lower pH(Total) (7.57-7.59) and lower dissolved oxygen (13-42 mu mol kg(-1)) environments suggest that S. fragilis may be potentially vulnerable to crushing predators if these conditions become more widespread in the future. In addition, elemental composition indicates that S. fragilis has a skeleton composed of the low Mg-calcite mineral phase of calcium carbonate (mean Mg/Ca = 0.02 mol mol(-1)), with Mg/Ca values measured in the lower end of values reported for sea urchins known to date. Together these findings suggest that ongoing declines in oxygen and pH will likely affect the ecology and fitness of a dominant echinoid on the California margin.

S
Woulds, C, Andersson JH, Cowie GL, Middelburg JJ, Levin LA.  2009.  The short-term fate of organic carbon in marine sediments: Comparing the Pakistan margin to other regions. Deep Sea Research (Part II, Topical Studies in Oceanography). 56:393-402., United Kingdom: Elsevier BV   10.1016/j.dsr2.2008.10.008   AbstractWebsite

Pulse-chase experiments with isotopically labelled phytodetritus conducted across the Pakistan margin reveal that the impact of biological activities on benthic C-cycling varies markedly among sites exhibiting different seafloor conditions. In this study, patterns of biological C-processing across the Pakistan margin oxygen minimum zone (OMZ) are compared with those observed in previous tracer studies. Variations in site environmental conditions are proposed to explain the considerable variations in C-processing patterns among this and previous studies. Three categories of C-processing pattern are identified: (1) respiration dominated, where respiration accounts for >75% of biological C-processing, and uptake by metazoan macrofauna, foraminifera and bacteria are relatively minor processes. These sites tend to show several (although not necessarily all) of the properties of being cold and deep, and having low inputs of organic carbon to the sediment and relatively low-biomass metazoan macrofaunal communities; (2) active faunal uptake, where respiration accounts for <75%, and metazoan macrofaunal, foraminiferal and bacterial uptake each account for 10-25% of biological C-processing. This type is further split into metazoan macrofaunal- and foraminiferal-dominated situations, dictated by oxygen availability; and (3) metazoan macrofaunal uptake dominated, characterised by metazoan macrofaunal uptake accounting for ~50% of biological C-processing, due to unusually large biomasses of the phytodetritus-consuming animals. Total respiration rates (of added C) on the Pakistan margin fell within the range of rates measured elsewhere in the deep sea (} .1-2.8mgCm super(-) super(2)h super(-) super(1)), and seem to be dominantly controlled by seafloor temperature. Rates of metazoan macrofaunal uptake of organic matter (OM) on the Pakistan margin are larger than those in most other studies, and this is attributed to the large and active metazoan macrofaunal communities in the lower OMZ, characteristic of OMZ boundaries. Finally, biological mixing of Pakistan margin sediments was reduced compared to that observed in comparable tracer studies on other margins. This probably reflects faunal feeding and burrowing strategies consistent with low oxygen concentrations and a relatively abundant supply of sedimentary OM.

Andersson, JH, Woulds C, Schwartz M, Cowie GL, Levin LA, Soetaert K, Middelburg JJ.  2008.  Short-term fate of phytodetritus in sediments across the Arabian Sea oxygen minimum zone. Biogeosciences. 5:43-53. AbstractWebsite

The short-term fate of phytodetritus was investigated across the Pakistan margin of the Arabian Sea at water depths ranging from 140 to 1850 m, encompassing the oxygen minimum zone (similar to 100-1100 m). Phytodetritus sedimentation events were simulated by adding similar to 44 mmol (13)C-labelled algal material per m(2) to surface sediments in retrieved cores. Cores were incubated in the dark, at in situ temperature and oxygen concentrations. Overlying waters were sampled periodically, and cores were recovered and sampled (for organisms and sediments) after durations of two and five days. The labelled carbon was subsequently traced into bacterial lipids, foraminiferan and macrofaunal biomass, and dissolved organic and inorganic pools. The majority of the label (20 to 100%) was in most cases left unprocessed in the sediment at the surface. The largest pool of processed carbon was found to be respiration (0 to 25% of added carbon), recovered as dissolved inorganic carbon. Both temperature and oxygen were found to influence the rate of respiration. Macrofaunal influence was most pronounced at the lower part of the oxygen minimum zone where it contributed 11% to the processing of phytodetritus.

Mehring, AS, Hatt BE, Kraikittikun D, Orelo BD, Rippy MA, Grant SB, Gonzalez JP, Jiang SC, Ambrose RF, Levin LA.  2016.  Soil invertebrates in Australian rain gardens and their potential roles in storage and processing of nitrogen. Ecological Engineering. 97:138-143.   10.1016/j.ecoleng.2016.09.005   AbstractWebsite

Research on rain gardens generally focuses on hydrology, geochemistry, and vegetation. The role of soil invertebrates has largely been overlooked, despite their well-known impacts on soil nutrient storage, removal, and processing. Surveys of three rain gardens in Melbourne, Australia, revealed a soil invertebrate community structure that differed significantly among sites but was stable across sampling dates (July 2013 and April 2014). Megadrilacea (earthworms), Enchytraeidae (potworms), and Collembola (springtails) were abundant in all sites, and together accounted for a median of 80% of total soil invertebrate abundance. Earthworms were positively correlated to soil organic matter content, but the abundances of other taxonomic groups were not strongly related to organic matter content, plant cover, or root biomass across sites. While less than 5% of total soil N was estimated to be stored in the body tissues of these three taxa, and estimated N gas emissions from earthworms (N2O and N-2) were low, ingestion and processing of soil was high (e.g., up to 417% of the upper 5 cm of soil ingested by earthworms annually in one site), suggesting that the contribution of these organisms to N cycling in rain gardens may be substantial. Thus, invertebrate communities represent an overlooked feature of rain garden design that can play an important role in the structure and function of these systems. (C) 2016 Elsevier B.V. All rights reserved.

Parker, ED, Forbes VE, Nielsen SL, Ritter C, Barata C, Baird DJ, Admiraal W, Levin L, Loeschke V, Lyytikainen-Saarenmaa P, Hogh-Jensen H, Calow P, Ripley BJ.  1999.  Stress in ecological systems. Oikos. 86:179-184.   10.2307/3546584   AbstractWebsite
n/a
Ramirez-Llodra, E, Trannum HC, Evenset A, Levin LA, Andersson M, Finne TE, Hilario A, Flem B, Christensen G, Schaanning M, Vanreusel A.  2015.  Submarine and deep-sea mine tailing placements: A review of current practices, environmental issues, natural analogs and knowledge gaps in Norway and internationally. Marine Pollution Bulletin. 97:13-35.   10.1016/j.marpolbul.2015.05.062   AbstractWebsite

The mining sector is growing in parallel with societal demands for minerals. One of the most important environmental issues and economic burdens of industrial mining on land is the safe storage of the vast amounts of waste produced. Traditionally, tailings have been stored in land dams, but the lack of land availability, potential risk of dam failure and topography in coastal areas in certain countries results in increasing disposal of tailings into marine systems. This review describes the different submarine tailing disposal methods used in the world in general and in Norway in particular, their impact on the environment (e.g. hyper-sedimentation, toxicity, processes related to changes in grain shape and size, turbidity), current legislation and need for future research. Understanding these impacts on the habitat and biota is essential to assess potential ecosystem changes and to develop best available techniques and robust management plans. (C) 2015 Elsevier Ltd. All rights reserved.