Export 28 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Lu, WH, Cusack C, Baker M, Wang T, Chen MB, Paige K, Zhang XF, Levin L, Escobar E, Amon D, Yin Y, Reitz A, Neves AAS, O'Rourke E, Mannarini G, Pearlman J, Tinker J, Horsburgh KJ, Lehodey P, Pouliquen S, Dale T, Zhao P, Yang YF.  2019.  Successful blue economy examples with an emphasis on international perspectives. Frontiers in Marine Science. 6   10.3389/fmars.2019.00261   AbstractWebsite

Careful definition and illustrative case studies are fundamental work in developing a Blue Economy. As blue research expands with the world increasingly understanding its importance, policy makers and research institutions worldwide concerned with ocean and coastal regions are demanding further and improved analysis of the Blue Economy. Particularly, in terms of the management connotation, data access, monitoring, and product development, countries are making decisions according to their own needs. As a consequence of this lack of consensus, further dialogue including this cases analysis of the blue economy is even more necessary. This paper consists of four chapters: (I) Understanding the concept of Blue Economy, (II) Defining Blue economy theoretical cases, (III) Introducing Blue economy application cases and (IV) Providing an outlook for the future. Chapters (II) and (III) summarizes all the case studies into nine aspects, each aiming to represent different aspects of the blue economy. This paper is a result of knowledge and experience collected from across the global ocean observing community, and is only made possible with encouragement, support and help of all members. Despite the blue economy being a relatively new concept, we have demonstrated our promising exploration in a number of areas. We put forward proposals for the development of the blue economy, including shouldering global responsibilities to protect marine ecological environment, strengthening international communication and sharing development achievements, and promoting the establishment of global blue partnerships. However, there is clearly much room for further development in terms of the scope and depth of our collective understanding and analysis.

Grant, SB, Saphores JD, Feldman DL, Hamilton AJ, Fletcher TD, Cook PLM, Stewardson M, Sanders BF, Levin LA, Ambrose RF, Deletic A, Brown R, Jiang SC, Rosso D, Cooper WJ, Marusic I.  2012.  Taking the "Waste" Out of "Wastewater" for Human Water Security and Ecosystem Sustainability. Science. 337:681-686.   10.1126/science.1216852   AbstractWebsite

Humans create vast quantities of wastewater through inefficiencies and poor management of water systems. The wasting of water poses sustainability challenges, depletes energy reserves, and undermines human water security and ecosystem health. Here we review emerging approaches for reusing wastewater and minimizing its generation. These complementary options make the most of scarce freshwater resources, serve the varying water needs of both developed and developing countries, and confer a variety of environmental benefits. Their widespread adoption will require changing how freshwater is sourced, used, managed, and priced.

Moseman-Valtierra, SM, Armaiz-Nolla K, Levin LA.  2010.  Wetland response to sedimentation and nitrogen loading: diversification and inhibition of nitrogen-fixing microbes. Ecological Applications. 20:1556-1568.   10.1890/08-1881.1   AbstractWebsite

Anthropogenic inputs of nutrients and sediment simultaneously impact coastal ecosystems, such as wetlands, especially during storms. Independent and combined effects of sediment and ammonium nitrate loading on nitrogen fixation rates and diversity of microbes that fix nitrogen (diazotrophs) were tested via field manipulations in Spartina foliosa and unvegetated zones at Tijuana Estuary (California, USA). This estuary is subject to episodic nitrogen enrichment and sedimentation associated with rain-driven flooding and slope instabilities, the latter of which may worsen as the Triple Border Fence is constructed along the U.S.-Mexico border. Responses of diazotrophs were assessed over 17 days using acetylene reduction assays and genetic fingerprinting (terminal restriction fragment length polymorphism [T-RFLP]) of nifH, which codes for dinitrogenase reductase. Sulfate-reducing bacteria performed similar to 70% of nitrogen fixation in Spartina foliosa rhizospheres in the absence of nitrogen loading, based on sodium molybdate inhibitions in the laboratory. Following nutrient additions, richness (number of T-RFs [terminal restriction fragments]) and evenness (relative T-RF fluorescence) of diazotrophs in surface sediments increased, but nitrogen fixation rates decreased significantly within 17 days. These responses illustrate, within a microbial community, conformance to a more general ecological pattern of high function among assemblages of low diversity. Diazotroph community composition (T-RF profiles) and rhizosphere diversity were not affected. Pore water ammonium concentrations were higher and more persistent for 17 days in plots receiving sediment additions (1 cm deep), suggesting that recovery of diazotroph functions may be delayed by the combination of sediment and nutrient inputs. Nitrogen fixation constitutes a mechanism for rapid transfer of fixed N to S. foliosa roots and a variety of primary consumers (within 3 and 8 days, respectively), as determined via (15)N(2) enrichment studies with in situ microcosms of intact marsh sediment. Thus, long-term declines in nitrogen fixation rates in response to increasingly frequent nutrient loading and sedimentation may potentially alter nitrogen sources for vascular plants as well as trophic pathways in wetland ecosystems.