Publications

Export 231 results:
Sort by: Author Title Type [ Year  (Desc)]
2018
Navarro, MO, Parnell PE, Levin LA.  2018.  Essential market squid (Doryteuthis opalescens) embryo habitat: A baseline for anticipated ocean climate change. Journal of Shellfish Research. 37:601-614.   10.2983/035.037.0313   AbstractWebsite

The market squid Doryteuthis opalescens deposits embryo capsules onto the continental shelf from Baja California to southern Alaska, yet little is known about the environment of embryo habitat. This study provides a baseline of environmental data and insights on factors underlying site selection for embryo deposition off southern California, and defines current essential embryo habitat using (1) remotely operated vehicle-supported surveys of benthos and environmental variables, (2) SCUBA surveys, and (3) bottom measurements of T, S, pH, and O-2. Here, embryo habitat is defined using embryo capsule density, capsule bed area, consistent bed footprint, and association with [O-2] and pH (pCO(2)) on the shelf. Spatial variation in embryo capsule density and location appears dependent on environmental conditions, whereas the temporal pattern of year-round spawning is not. Embryos require [O-2] greater than 160 mu mol and pH(T) greater than 7.8. Temperature does not appear to be limiting (range: 9.9 degrees C-15.5 degrees C). Dense embryo beds were observed infrequently, whereas low-density cryptic aggregations were common. Observations of dense embryo aggregation in response to shoaling of low [O-2] and pH indicate habitat compression. Essential embryo habitat likely expands and contracts in space and time directly with regional occurrence of appropriate O-2 and pH exposure. Embryo habitat will likely be at future risk of compression given secular trends of deoxygenation and acidification within the Southern California Bight. Increasingly localized and dense spawning may become more common, resulting in potentially important changes in market squid ecology and management.

Dunn, DC, Vandover CL, Etter RJ, Smith CR, Levin LA, Morato T, Colaco A, Dale AC, Gebruk AV, Gjerde KM, Halpin PN, Howell KL, Johnson D, Perez JAA, Ribeiro MC, Stuckas H, Weaver P, Participants SW.  2018.  A strategy for the conservation of biodiversity on mid-ocean ridges from deep-sea mining. Science Advances. 4   10.1126/sciadv.aar4313   AbstractWebsite

Mineral exploitation has spread from land to shallow coastal waters and is now planned for the offshore, deep seabed. Large seafloor areas are being approved for exploration for seafloor mineral deposits, creating an urgent need for regional environmental management plans. Networks of areas where mining and mining impacts are prohibited are key elements of these plans. We adapt marine reserve design principles to the distinctive biophysical environment of mid-ocean ridges, offer a framework for design and evaluation of these networks to support conservation of benthic ecosystems on mid-ocean ridges, and introduce projected climate-induced changes in the deep sea to the evaluation of reserve design. We enumerate a suite of metrics to measure network performance against conservation targets and network design criteria promulgated by the Convention on Biological Diversity. We apply these metrics to network scenarios on the northern and equatorial Mid-Atlantic Ridge, where contractors are exploring for seafloor massive sulfide (SMS) deposits. A latitudinally distributed network of areas performs well at (i) capturing ecologically important areas and 30 to 50% of the spreading ridge areas, (ii) replicating representative areas, (iii) maintaining along-ridge population connectivity, and (iv) protecting areas potentially less affected by climate-related changes. Critically, the network design is adaptive, allowing for refinement based on new knowledge and the location of mining sites, provided that design principles and conservation targets are maintained. This framework can be applied along the global mid-ocean ridge system as a precautionary measure to protect biodiversity and ecosystem function from impacts of SMS mining.

Sato, KN, Powell J, Rudie D, Levin LA.  2018.  Evaluating the promise and pitfalls of a potential climate change-tolerant sea urchin fishery in southern California. Ices Journal of Marine Science. 75:1029-1041.   10.1093/icesjms/fsx225   AbstractWebsite

Marine fishery stakeholders are beginning to consider and implement adaptation strategies in the face of growing consumer demand and potential deleterious climate change impacts such as ocean warming, ocean acidification, and deoxygenation. This study investigates the potential for development of a novel climate change-tolerant sea urchin fishery in southern California based on Strongylocentrotus fragilis (pink sea urchin), a deep-sea species whose peak density was found to coincide with a current trap-based spot prawn fishery (Pandalus platyceros) in the 200-300-m depth range. Here we outline potential criteria for a climate change-tolerant fishery by examining the distribution, life-history attributes, and marketable qualities of S. fragilis in southern California. We provide evidence of seasonality of gonad production and demonstrate that peak gonad production occurs in the winter season. S. fragilis likely spawns in the spring season as evidenced by consistent minimum gonad indices in the spring/summer seasons across 4 years of sampling (2012-2016). The resiliency of S. fragilis to predicted future increases in acidity and decreases in oxygen was supported by high species abundance, albeit reduced relative growth rate estimates at water depths (485-510 m) subject to low oxygen (11.7-16.9 mmol kg similar to 1) and pHTotal (< 7.44), which may provide assurances to stakeholders and managers regarding the suitability of this species for commercial exploitation. Some food quality properties of the S. fragilis roe (e. g. colour, texture) were comparable with those of the commercially exploited shallow-water red sea urchin (Mesocentrotus franciscanus), while other qualities (e. g. 80% reduced gonad size by weight) limit the potential future marketability of S. fragilis. This case study highlights the potential future challenges and drawbacks of climate-tolerant fishery development in an attempt to inform future urchin fishery stakeholders.

Breitburg, D, Levin LA, Oschlies A, Grégoire M, Chavez FP, Conley DJ, Garçon V, Gilbert D, Gutiérrez D, Isensee K, Jacinto GS, Limburg KE, Montes I, Naqvi SWA, Pitcher GC, Rabalais NN, Roman MR, Rose KA, Seibel BA, Telszewski M, Yasuhara M, Zhang J.  2018.  Declining oxygen in the global ocean and coastal waters. Science. 359   10.1126/science.aam7240   Abstract

As plastic waste pollutes the oceans and fish stocks decline, unseen below the surface another problem grows: deoxygenation. Breitburg et al. review the evidence for the downward trajectory of oxygen levels in increasing areas of the open ocean and coastal waters. Rising nutrient loads coupled with climate change—each resulting from human activities—are changing ocean biogeochemistry and increasing oxygen consumption. This results in destabilization of sediments and fundamental shifts in the availability of key nutrients. In the short term, some compensatory effects may result in improvements in local fisheries, such as in cases where stocks are squeezed between the surface and elevated oxygen minimum zones. In the longer term, these conditions are unsustainable and may result in ecosystem collapses, which ultimately will cause societal and economic harm.

Neira, C, Vales M, Mendoza G, Hoh E, Levin LA.  2018.  Polychlorinated biphenyls (PCBs) in recreational marina sediments of San Diego Bay, southern California. Marine Pollution Bulletin. 126:204-214.   10.1016/j.marpolbul.2017.10.096   AbstractWebsite

Polychlorinated biphenyl (PCB) concentrations were determined in surface sediments from three recreational marinas in San Diego Bay, California. Total PCB concentrations ranged from 23 to 153, 31-294, and 151-1387 ng g(-1) for Shelter Island Yacht Basin (SIYB), Harbor Island West (HW) and Harbor Island East (HE), respectively. PCB concentrations were significantly higher in HE and PCB group composition differed relative to HW and SIYB, which were not significantly different from each other in concentration or group composition. In marina sediments there was a predominance (82-85%) of heavier molecular weight PCBs with homologous groups (6CL-7CL) comprising 59% of the total. In HE 75% of the sites exceeded the effect range median (ERM), and toxicity equivalence (TEQ dioxin-like PCBs) values were higher relative to those of HW and SIYB, suggesting a potential ecotoxicological risk.

2017
Sweetman, AK, Thurber AR, Smith CR, Levin LA, Mora C, Wei CL, Gooday AJ, Jones DOB, Rex M, Yasuhara M, Ingels J, Ruhl HA, Frieder CA, Danovaro R, Wurzberg L, Baco A, Grupe BM, Pasulka A, Meyer KS, Dunlop KM, Henry LA, Roberts JM.  2017.  Major impacts of climate change on deep-sea benthic ecosystems. Elementa-Science of the Anthropocene. 5:1-23.   10.1525/elementa.203   AbstractWebsite

The deep sea encompasses the largest ecosystems on Earth. Although poorly known, deep seafloor ecosystems provide services that are vitally important to the entire ocean and biosphere. Rising atmospheric greenhouse gases are bringing about significant changes in the environmental properties of the ocean realm in terms of water column oxygenation, temperature, pH and food supply, with concomitant impacts on deep-sea ecosystems. Projections suggest that abyssal (3000-6000 m) ocean temperatures could increase by 1 degrees C over the next 84 years, while abyssal seafloor habitats under areas of deep-water formation may experience reductions in water column oxygen concentrations by as much as 0.03 mL L-1 by 2100. Bathyal depths (200-3000 m) worldwide will undergo the most significant reductions in pH in all oceans by the year 2100 (0.29 to 0.37 pH units). O-2 concentrations will also decline in the bathyal NE Pacific and Southern Oceans, with losses up to 3.7% or more, especially at intermediate depths. Another important environmental parameter, the flux of particulate organic matter to the seafloor, is likely to decline significantly in most oceans, most notably in the abyssal and bathyal Indian Ocean where it is predicted to decrease by 40-55% by the end of the century. Unfortunately, how these major changes will affect deep-seafloor ecosystems is, in some cases, very poorly understood. In this paper, we provide a detailed overview of the impacts of these changing environmental parameters on deep-seafloor ecosystems that will most likely be seen by 2100 in continental margin, abyssal and polar settings. We also consider how these changes may combine with other anthropogenic stressors (e.g., fishing, mineral mining, oil and gas extraction) to further impact deep-seafloor ecosystems and discuss the possible societal implications.

Gallo, ND, Victor DG, Levin LA.  2017.  Ocean commitments under the Paris Agreement. Nature Climate Change. 7:833-+.   10.1038/nclimate3422   AbstractWebsite

Under the Paris Agreement nations made pledges known as nationally determined contributions (NDCs), which indicate how national governments are evaluating climate risks and policy opportunities. We find that NDCs reveal important systematic patterns reflecting national interests and capabilities. Because the ocean plays critical roles in climate mitigation and adaptation, we created a quantitative marine focus factor (MFF) to evaluate how governments address marine issues. In contrast to the past, when oceans received minimal attention in climate negotiations, 70% of 161 NDCs we analysed include marine issues. The percentage of the population living in low-lying areas-vulnerable to rising seas-positively influences the MFF, but negotiating group (Annex 1 or small island developing states) is equally important, suggesting political motivations are crucial to NDC development. The analysis reveals gaps between scientific and government attention, including on ocean deoxygenation, which is barely mentioned. Governments display a keen interest in expanding marine research on climate priorities.

McCormick, LR, Levin LA.  2017.  Physiological and ecological implications of ocean deoxygenation for vision in marine organisms. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences. 375   10.1098/rsta.2016.0322   AbstractWebsite

Climate change has induced ocean deoxygenation and exacerbated eutrophication-driven hypoxia in recent decades, affecting the physiology, behaviour and ecology of marine organisms. The high oxygen demand of visual tissues and the known inhibitory effects of hypoxia on human vision raise the questions if and how ocean deoxygenation alters vision in marine organisms. This is particularly important given the rapid loss of oxygen and strong vertical gradients in oxygen concentration in many areas of the ocean. This review evaluates the potential effects of low oxygen (hypoxia) on visual function in marine animals and their implications for marine biota under current and future ocean deoxygenation based on evidence from terrestrial and a few marine organisms. Evolutionary history shows radiation of eye designs during a period of increasing ocean oxygenation. Physiological effects of hypoxia on photoreceptor function and light sensitivity, in combination with morphological changes that may occur throughout ontogeny, have the potential to alter visual behaviour and, subsequently, the ecology of marine organisms, particularly for fish, cephalopods and arthropods with `fast' vision. Visual responses to hypoxia, including greater light requirements, offer an alternative hypothesis for observed habitat compression and shoaling vertical distributions in visual marine species subject to ocean deoxygenation, which merits further investigation. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.

Parker, EA, Rippy MA, Mehring AS, Winfrey BK, Ambrose RF, Levin LA, Grant SB.  2017.  Predictive power of clean bed filtration theory for fecal indicator bacteria removal in stormwater biofilters. Environmental Science & Technology. 51:5703-5712.   10.1021/acs.est.7b00752   AbstractWebsite

Green infrastructure (also referred to as low impact development, or LID) has the potential to transform urban stormwater runoff from an environmental threat to a valuable water resource. In this paper we focus on the removal of fecal indicator bacteria (FIB, a pollutant responsible for runoff associated inland and coastal beach closures) in stormwater biofilters (a common type of green infrastructure). Drawing on a combination of previously published and new laboratory studies of FIB removal in biofilters, we find that 66% of the variance in FIB removal rates can be explained by clean bed filtration theory (CBFT, 31%), antecedent dry period (14%), study effect (8%), biofilter age (7%), and the presence or absence of shrubs (6%). Our analysis suggests that, with the exception of shrubs, plants affect FIB removal indirectly by changing the infiltration rate, not directly by changing the FIB removal mechanisms or altering filtration rates in ways not already accounted for by CBFT. The analysis presented here represents a significant step forward in our understanding of how physicochemical theories (such as CBFT) can be melded with hydrology, engineering design, and ecology to improve the water quality benefits of green infrastructure.

Hansman, RL, Thurber AR, Levin LA, Aluwihare LI.  2017.  Methane fates in the benthos and water column at cold seep sites along the continental margin of Central and North America. Deep-Sea Research Part I-Oceanographic Research Papers. 120:122-131.   10.1016/j.dsr.2016.12.016   AbstractWebsite

The potential influence of methane seeps on carbon cycling is a key question for global assessments, but the study of carbon cycling in surface sediments and the water column of cold seep environments is complicated by the high temporal and spatial variability of fluid and gas fluxes at these sites. In this study we directly examined carbon sources supporting benthic and planktonic food webs at venting methane seeps using isotopic and molecular approaches that integrate this variability. At four seep environments located along North and Central America, microorganisms from two size fractions were collected over several days from 2800 to 90501 of seawater to provide a time-integrated measure of key microbial groups and the carbon sources supporting the overall planktonic microbial community. In addition to water column measurements, the extent of seafloor methane release was estimated at two of the sites by examining the stable carbon isotopic signature (delta C-13) of benthic metazoan infauna. This signature reveals carbon sources fueling the base of the food chain and thus provides a metric that represents a time-integrated view of the dominant microbial processes within the sediment. The stable carbon isotopic composition of microbial DNA (delta C-13-DNA), which had values between -17.0 and -19.5%(0), indicated that bulk planktonic microbial production was not ultimately linked to methane or other C-13-depleted seep-derived carbon sources. Instead these data support the importance of organic carbon derived from either photo- or chemoautotrophic CO2 fixation to the planktonic food web. Results of qPCR of microbial DNA sequences coding for a subunit of the particulate methane monooxygenase gene (pmoA) showed that only a small percentage of the planktonic microbial community were potential methane oxidizers possessing pmoA (< 5% of 16S rRNA gene copies). There was an overall decrease of C-13-depleted carbon fueling the benthic metazoan community from 3 to 5 cm below the seafloor to the sediment surface, reflecting limited use of isotopically depleted carbon at the sediment surface. Rare methane emission as indicated by limited aerobic methane oxidation acts to corroborate our findings for the planktonic microbial community.

Pasulka, AL, Goffredi SK, Tavormina PL, Dawson KS, Levin LA, Rouse GW, Orphan VJ.  2017.  Colonial tube-dwelling ciliates influence methane cycling and microbial diversity within methane seep ecosystems. Frontiers in Marine Science. 3   10.3389/fmars.2016.00276   Abstract

In a variety of marine ecosystems, microbial eukaryotes play important ecological roles; however, our knowledge of their importance in deep-sea methane seep ecosystems is limited. Microbial eukaryotes have the potential to influence microbial community composition and diversity by creating habitat heterogeneity, and may contribute to carbon cycling through grazing or symbiotic associations with microorganisms. In this study, we characterized the distribution, substrate variability and ecology of a particular group of microbial eukaryotes, known as folliculinid ciliates, at methane seeps along the eastern Pacific margin. Folliculinid ciliates were recently recognized as an abundant and ecologically important component of hydrothermal vent ecosystems, but their ecology in methane seeps has not been examined. Folliculinid ciliates inhabited methane seeps from Costa Rica to Oregon, suggesting a broad distribution in the eastern Pacific. Using phylogenetic analyses of the 18S rRNA gene, two different species of folliculinid were identified. Folliculinids occupied a range of physical substrates, including authigenic carbonate rocks, shells of dead vesicomyid clams, polychaete tubes and gastropod shells. Molecular analysis of folliculinid associated microorganisms (16S rRNA and particulate methane monooxygenase) revealed that these ciliates not only influence overall microbial diversity, but also and have a specific relationship with bacteria in the ‘Deep sea-2’ methanotroph clade. Natural δ13C isotope signatures of folliculinids (-35‰) and their 13C-enrichment patterns in shipboard 13CH4 stable isotope-probing experiments indicated these ciliates and their associated microbes are involved in cycling methane-derived carbon. Folliculinids were significantly enriched in 13C after the addition of 13CH4 over short-term (3-8 day) incubations. Together, these results suggest that folliculinid ciliates represent a previously overlooked contributor to the ecology and biogeochemical cycling of deep-sea methane seep ecosystems.

Neira, C, Cossaboon J, Mendoza G, Hoh E, Levin LA.  2017.  Occurrence and distribution of polycyclic aromatic hydrocarbons in surface sediments of San Diego Bay marinas. Marine Pollution Bulletin. 114:466-479.   10.1016/j.marpolbul.2016.10.009   Abstract

Polycyclic aromatic hydrocarbons (PAHs) have garnered much attention due to their bioaccumulation, carcinogenic properties, and persistence in the environment. Investigation of the spatial distribution, composition, and sources of PAHs in sediments of three recreational marinas in San Diego Bay, California revealed significant differences among marinas, with concentrations in one site exceeding 16,000 ng g− 1. ‘Hotspots’ of PAH concentration suggest an association with stormwater outfalls draining into the basins. High-molecular weight PAHs (4–6 rings) were dominant (> 86%); the average percentage of potentially carcinogenic PAHs was high in all sites (61.4–70%) but ecotoxicological risks varied among marinas. Highly toxic benzo(a)pyrene (BaP) was the main contributor (> 90%) to the total toxic equivalent quantity (TEQ) in marinas. PAHs in San Diego Bay marina sediments appear to be derived largely from pyrogenic sources, potentially from combustion products that reach the basins by aerial deposition and stormwater drainage from nearby streets and parking lots.

2016
Levin, LA, Mengerink K, Gjerde KM, Rowden AA, Vandover CL, Clark MR, Ramirez-Llodra E, Currie B, Smith CR, Sato KN, Gallo N, Sweetman AK, Lily H, Armstrong CW, Brider J.  2016.  Defining "serious harm" to the marine environment in the context of deep-seabed mining. Marine Policy. 74:245-259.   10.1016/j.marpol.2016.09.032   AbstractWebsite

Increasing interest in deep-seabed mining has raised many questions surrounding its potential environmental impacts and how to assess the impacts' significance. Under the United Nations Convention on the Law of the Sea (UNCLOS), the International Seabed Authority (ISA) is charged with ensuring effective protection of the marine environment as part of its responsibilities for managing mining in seabed areas beyond national jurisdiction (the Area) on behalf of humankind. This paper examines the international legal context for protection of the marine environment and defining the significant adverse change that can cause "serious harm", a term used in the ISA Mining Code to indicate a level of harm that strong actions must be taken to avoid. It examines the thresholds and indicators that can reflect significant adverse change and considers the specific vulnerability of the four ecosystems associated with the minerals targeted for mining: (1) manganese (polymetallic) nodules, (2) seafloor massive (polymetallic) sulphides, (3) cobalt-rich (polymetallic) crusts and (4) phosphorites. The distributions and ecological setting, probable mining approaches and the potential environmental impacts of mining are examined for abyssal polymetallic nodule provinces, hydrothermal vents, seamounts and phosphorite-rich continental margins. Discussion focuses on the special features of the marine environment that affect the significance of the predicted environmental impacts and suggests actions that will advance understanding of these impacts.

Navarro, MO, Kwan GT, Batalov O, Choi CY, Pierce NT, Levin LA.  2016.  Development of embryonic market squid, Doryteuthis opalescens, under chronic exposure to low environmental pH and O-2. Plos One. 11   10.1371/journal.pone.0167461   AbstractWebsite

The market squid, Doryteuthis opalescens, is an important forage species for the inshore ecosystems of the California Current System. Due to increased upwelling and expansion of the oxygen minimum zone in the California Current Ecosystem, the inshore environment is expected to experience lower pH and [O-2] conditions in the future, potentially impacting the development of seafloor-attached encapsulated embryos. To understand the consequences of this co-occurring environmental pH and [O-2] stress for D. opalescens encapsulated embryos, we performed two laboratory experiments. In Experiment 1, embryo capsules were chronically exposed to a treatment of higher (normal) pH (7.93) and [O-2] (242 mu M) or a treatment of low pH (7.57) and [O-2] (80 mu M), characteristic of upwelling events and/or La Nina conditions. The low pH and low [O-2] treatment extended embryo development duration by 5-7 days; embryos remained at less developed stages more often and had 54.7% smaller statolith area at a given embryo size. Importantly, the embryos that did develop to mature embryonic stages grew to sizes that were similar (non-distinct) to those exposed to the high pH and high [O-2] treatment. In Experiment 2, we exposed encapsulated embryos to a single stressor, low pH (7.56) or low [O-2] (85 mu M), to understand the importance of environmental pH and [O-2] rising and falling together for squid embryogenesis. Embryos in the low pH only treatment had smaller yolk reserves and bigger statoliths compared to those in low [O-2] only treatment. These results suggest that D. opalescens developmental duration and statolith size are impacted by exposure to environmental [O-2] and pH (pCO(2)) and provide insight into embryo resilience to these effects.

Mehring, AS, Hatt BE, Kraikittikun D, Orelo BD, Rippy MA, Grant SB, Gonzalez JP, Jiang SC, Ambrose RF, Levin LA.  2016.  Soil invertebrates in Australian rain gardens and their potential roles in storage and processing of nitrogen. Ecological Engineering. 97:138-143.   10.1016/j.ecoleng.2016.09.005   AbstractWebsite

Research on rain gardens generally focuses on hydrology, geochemistry, and vegetation. The role of soil invertebrates has largely been overlooked, despite their well-known impacts on soil nutrient storage, removal, and processing. Surveys of three rain gardens in Melbourne, Australia, revealed a soil invertebrate community structure that differed significantly among sites but was stable across sampling dates (July 2013 and April 2014). Megadrilacea (earthworms), Enchytraeidae (potworms), and Collembola (springtails) were abundant in all sites, and together accounted for a median of 80% of total soil invertebrate abundance. Earthworms were positively correlated to soil organic matter content, but the abundances of other taxonomic groups were not strongly related to organic matter content, plant cover, or root biomass across sites. While less than 5% of total soil N was estimated to be stored in the body tissues of these three taxa, and estimated N gas emissions from earthworms (N2O and N-2) were low, ingestion and processing of soil was high (e.g., up to 417% of the upper 5 cm of soil ingested by earthworms annually in one site), suggesting that the contribution of these organisms to N cycling in rain gardens may be substantial. Thus, invertebrate communities represent an overlooked feature of rain garden design that can play an important role in the structure and function of these systems. (C) 2016 Elsevier B.V. All rights reserved.

Burkett, AM, Rathburn AE, Perez ME, Levin LA, Martin JB.  2016.  Colonization of over a thousand Cibicidoides wuellerstorfi (foraminifera: Schwager, 1866) on artificial substrates in seep and adjacent off-seep locations in dysoxic, deep-sea environments. Deep-Sea Research Part I-Oceanographic Research Papers. 117:39-50.   10.1016/j.dsr.2016.08.011   AbstractWebsite

After-1 yr on the seafloor at water depths of similar to 700 m on Hydrate Ridge in the Pacific, eight colonization experiments composed primarily of a plastic mesh cube (from here on refered to as SEA(3), for Seafloor Epibenthic Attachment Cubes) were colonized by 1076 Cibicidoides wuellerstorfi on similar to 1841 cm(2) of experimental substrate. This species is typically considered an indicator of well-oxygenated conditions, and recruitment of such large numbers in bottom waters with low dissolved oxygen availability (0.24-0.37 mL/L) indicate that this taxon may not be as limited by oxygen as previously thought. Clues about substrate preferences were evident from the distribution, or lack thereof, of individuals among plastic mesh, coated steel frame, wooden dowels and reflective tape. Abundance, individual size distributions within cage populations and isotopic biogeochemistry of living foraminifera colonizing experimental substrates were compared between active seep and adjacent off seep experiment locations, revealing potential differences between these environments. Few studies have examined foraminiferal colonization of hard substrates in the deep-sea and to our knowledge no previous study has compared foraminiferal colonization of active seep and off-seep substrates from the same region. This study provides initial results of recruitment, colonization, geochemical and morphological aspects of the paleoceanographically significant species, C. wuellerstorfi, from dynamic deep-sea environments. Further experimental deployments of SEA(3)s will provide a means to assess relatively unknown ecologic dynamics of important foraminiferal deep-sea species.

Pasulka, AL, Levin LA, Steele JA, Case DH, Landry MR, Orphan VJ.  2016.  Microbial eukaryotic distributions and diversity patterns in a deep-sea methane seep ecosystem. Environmental Microbiology. 18:3022-3043.   10.1111/1462-2920.13185   AbstractWebsite

Although chemosynthetic ecosystems are known to support diverse assemblages of microorganisms, the ecological and environmental factors that structure microbial eukaryotes (heterotrophic protists and fungi) are poorly characterized. In this study, we examined the geographic, geochemical and ecological factors that influence microbial eukaryotic composition and distribution patterns within Hydrate Ridge, a methane seep ecosystem off the coast of Oregon using a combination of high-throughput 18S rRNA tag sequencing, terminal restriction fragment length polymorphism fingerprinting, and cloning and sequencing of full-length 18S rRNA genes. Microbial eukaryotic composition and diversity varied as a function of substrate (carbonate versus sediment), activity (low activity versus active seep sites), sulfide concentration, and region (North versus South Hydrate Ridge). Sulfide concentration was correlated with changes in microbial eukaryotic composition and richness. This work also revealed the influence of oxygen content in the overlying water column and water depth on microbial eukaryotic composition and diversity, and identified distinct patterns from those previously observed for bacteria, archaea and macrofauna in methane seep ecosystems. Characterizing the structure of microbial eukaryotic communities in response to environmental variability is a key step towards understanding if and how microbial eukaryotes influence seep ecosystem structure and function.

Levin, LA, Baco AR, Bowden DA, Colaco A, Cordes EE, Cunha MR, Demopoulos AWJ, Gobin J, Grupe BM, Le J, Metaxas A, Netburn AN, Rouse GW, Thurber AR, Tunnicliffe V, Van Dover CL, Vanreusel A, Watling L.  2016.  Hydrothermal vents and methane seeps: Rethinking the sphere of influence. Frontiers in Marine Science. 3   10.3389/fmars.2016.00072   AbstractWebsite

Although initially viewed as oases within a barren deep ocean, hydrothermal vent and methane seep communities are now recognized to interact with surrounding ecosystems on the sea floor and in the water column, and to affect global geochemical cycles. The importance of understanding these interactions is growing as the potential rises for disturbance from oil and gas extraction, seabed mining and bottom trawling. Here we synthesize current knowledge of the nature, extent and time and space scales of vent and seep interactions with background systems. We document an expanded footprint beyond the site of local venting or seepage with respect to elemental cycling and energy flux, habitat use, trophic interactions, and connectivity. Heat and energy are released, global biogeochemical and elemental cycles are modified, and particulates are transported widely in plumes. Hard and biotic substrates produced at vents and seeps are used by “benthic background” fauna for attachment substrata, shelter, and access to food via grazing or through position in the current, while particulates and fluid fluxes modify planktonic microbial communities. Chemosynthetic production provides nutrition to a host of benthic and planktonic heterotrophic background species through multiple horizontal and vertical transfer pathways assisted by flow, gamete release, animal movements, and succession, but these pathways remain poorly known. Shared species, genera and families indicate that ecological and evolutionary connectivity exists among vents, seeps, organic falls and background communities in the deep sea; the genetic linkages with inactive vents and seeps and background assemblages however, are practically unstudied. The waning of venting or seepage activity generates major transitions in space and time that create links to surrounding ecosystems, often with identifiable ecotones or successional stages. The nature of all these interactions is dependent on water depth, as well as regional oceanography and biodiversity. Many ecosystem services are associated with the interactions and transitions between chemosynthetic and background ecosystems, for example carbon cycling and sequestration, fisheries production, and a host of non-market and cultural services. The quantification of the sphere of influence of vents and seeps could be beneficial to better management of deep-sea environments in the face of growing industrialization.

Moseman-Valtierra, S, Levin LA, Martin RM.  2016.  Anthropogenic impacts on nitrogen fixation rates between restored and natural Mediterranean salt marshes. Marine Ecology-an Evolutionary Perspective. 37:370-379.   10.1111/maec.12289   AbstractWebsite

To test the effects of site and successional stage on nitrogen fixation rates in salt marshes of the Venice Lagoon, Italy, acetylene reduction assays were performed with Salicornia veneta- and Spartina townsendii-vegetated sediments from three restored (6-14years) and two natural marshes. Average nitrogen fixation (acetylene reduction) rates ranged from 31 to 343 mu mol C2H4.m(-2.)h(-1) among all marshes, with the greatest average rates being from one natural marsh (Tezze Fonde). These high rates are up to six times greater than those reported from Southern California Spartina marshes of similar Mediterranean climate, but substantially lower than those found in moister climates of the Atlantic US coast. Nitrogen fixation rates did not consistently vary between natural and restored marshes within a site (Fossei Est, Tezze Fonde, Cenesa) but were negatively related to assayed plant biomass within the acetylene reduction samples collected among all marshes. Highest nitrogen fixation rates were found at Tezze Fonde, the location closest to the city of Venice, in both natural and restored marshes, suggesting possible site-specific impacts of anthropogenic stress on marsh succession.

Sperling, EA, Frieder CA, Levin LA.  2016.  Biodiversity response to natural gradients of multiple stressors on continental margins. Proceedings of the Royal Society of London B: Biological Sciences. 283   10.1098/rspb.2016.0637   Abstract

Sharp increases in atmospheric CO2 are resulting in ocean warming, acidification and deoxygenation that threaten marine organisms on continental margins and their ecological functions and resulting ecosystem services. The relative influence of these stressors on biodiversity remains unclear, as well as the threshold levels for change and when secondary stressors become important. One strategy to interpret adaptation potential and predict future faunal change is to examine ecological shifts along natural gradients in the modern ocean. Here, we assess the explanatory power of temperature, oxygen and the carbonate system for macrofaunal diversity and evenness along continental upwelling margins using variance partitioning techniques. Oxygen levels have the strongest explanatory capacity for variation in species diversity. Sharp drops in diversity are seen as O2 levels decline through the 0.5–0.15 ml l−1 (approx. 22–6 µM; approx. 21–5 matm) range, and as temperature increases through the 7–10°C range. pCO2 is the best explanatory variable in the Arabian Sea, but explains little of the variance in diversity in the eastern Pacific Ocean. By contrast, very little variation in evenness is explained by these three global change variables. The identification of sharp thresholds in ecological response are used here to predict areas of the seafloor where diversity is most at risk to future marine global change, noting that the existence of clear regional differences cautions against applying global thresholds.

Gallo, ND, Levin LA.  2016.  Fish ecology and evolution in the world's oxygen minimum zones and implications of ocean deoxygenation. Advances in Marine Biology, Vol 74. 74( Curry BE, Ed.).:117-198., San Diego: Elsevier Academic Press Inc   10.1016/bs.amb.2016.04.001   Abstract

Oxygen minimum zones (OMZs) and oxygen limited zones (OLZs) are important oceanographic features in the Pacific, Atlantic, and Indian Ocean, and are characterized by hypoxic conditions that are physiologically challenging for demersal fish. Thickness, depth of the upper boundary, minimum oxygen levels, local temperatures, and diurnal, seasonal, and interannual oxycline variability differ regionally, with the thickest and shallowest OMZs occurring in the subtropics and tropics. Although most fish are not hypoxia-tolerant, at least 77 demersal fish species from 16 orders have evolved physiological, behavioural, and morphological adaptations that allow them to live under the severely hypoxic, hypercapnic, and at times sulphidic conditions found in OMZs. Tolerance to OMZ conditions has evolved multiple times in multiple groups with no single fish family or genus exploiting all OMZs globally. Severely hypoxic conditions in OMZs lead to decreased demersal fish diversity, but fish density trends are variable and dependent on region-specific thresholds. Some OMZ-adapted fish species are more hypoxiatolerant than most megafaunal invertebrates and are present even when most invertebrates are excluded. Expansions and contractions of OMZs in the past have affected fish evolution and diversity. Current patterns of ocean warming are leading to ocean deoxygenation, causing the expansion and shoaling of OMZs, which is expected to decrease demersal fish diversity and alter trophic pathways on affected margins. Habitat compression is expected for hypoxia-intolerant species, causing increased susceptibility to overfishing for fisheries species. Demersal fisheries are likely to be negatively impacted overall by the expansion of OMZs in a warming world.

2015
Neira, C, Mendoza G, Porrachia M, Stransky C, Levin LA.  2015.  Macrofaunal recolonization of copper-contaminated sediments in San Diego Bay. Marine Pollution Bulletin. 101:794-804.   10.1016/j.marpolbul.2015.09.023   AbstractWebsite

Effects of Cu-loading on macrofaunal recolonization were examined in Shelter Island Yacht Basin (San Diego Bay, California). Sediments with high and low Cu levels were defaunated and Cu-spiked, translocated, and then placed back into the environment These demonstrated that the alteration observed in benthic communities associated with Cu contamination occurs during initial recolonization. After a 3-month exposure to sediments with varying Cu levels, two primary colonizing communities were identified: (1) a "mouth assemblage" resembling adjacent background fauna associated with low-Cu levels that was more diverse and predominantly dominated by surface- and subsurface-deposit feeders, burrowers, and tube builders, and (2) a "head assemblage" resembling adjacent background fauna associated with high-Cu concentrations, with few dominant species and an increasing importance of carnivores and mobile epifauna. Cu loading can cause reduced biodiversity and lower structural complexity that may last several months if high concentrations persist, with a direct effect on community functioning. (C) 2015 Elsevier Ltd. All rights reserved.

Mehring, AS, Levin LA.  2015.  Potential roles of soil fauna in improving the efficiency of rain gardens used as natural stormwater treatment systems. Journal of Applied Ecology. 52:1445-1454.   10.1111/1365-2664.12525   AbstractWebsite

Natural treatment systems such as rain gardens aim to overcome the negative effects of urbanization on water quality, availability, and freshwater and marine ecosystem integrity by mimicking the natural water cycle in urban planning and design. While soils in these systems are inhabited by a diverse array of invertebrates, the soil macrofauna is ignored in the vast majority of studies on new or existing rain gardens. Here, we review the functional roles of invertebrates commonly found within soils of rain gardens. Soil fauna have the potential to substantially alter plant growth, water infiltration rates, and the retention and removal of pathogens, nutrients, heavy metals and other contaminants. Their lack of inclusion in controlled laboratory or greenhouse studies may contribute to differences in observed function in field and laboratory settings. Promising future research directions include the following: (i) the use of controlled experiments to study invertebrate effects on rain garden function; (ii) determining the factors affecting variability in organismal abundance among and within sites; and (iii) the design of rain gardens to facilitate development of fauna that promote desired functions.Synthesis and applications. Soil fauna may substantially alter the function of rain gardens as natural stormwater treatment systems in urban areas. Therefore, incorporat-ing animal effects into design and testing may better enable managers and researchers tounderstand and optimize rain garden functioning, and forecast the longevity of rain gardens. Soil fauna may substantially alter the function of rain gardens as natural stormwater treatment systems in urban areas. Therefore, incorporat-ing animal effects into design and testing may better enable managers and researchers tounderstand and optimize rain garden functioning, and forecast the longevity of rain gardens.

Levin, LA, Le Bris N.  2015.  The deep ocean under climate change. Science. 350:766-768.   10.1126/science.aad0126   AbstractWebsite

The deep ocean absorbs vast amounts of heat and carbon dioxide, providing a critical buffer to climate change but exposing vulnerable ecosystems to combined stresses of warming, ocean acidification, deoxygenation, and altered food inputs. Resulting changes may threaten biodiversity and compromise key ocean services that maintain a healthy planet and human livelihoods. There exist large gaps in understanding of the physical and ecological feedbacks that will occur. Explicit recognition of deep-ocean climate mitigation and inclusion in adaptation planning by the United Nations Framework Convention on Climate Change (UNFCCC) could help to expand deep-ocean research and observation and to protect the integrity and functions of deep-ocean ecosystems.

Case, DH, Pasulka AL, Marlow JJ, Grupe BM, Levin LA, Orphan VJ.  2015.  Methane seep carbonates host distinct, diverse, and dynamic microbial assemblages. Mbio. 6   10.1128/mBio.01348-15   AbstractWebsite

Marine methane seeps are globally distributed geologic features in which reduced fluids, including methane, are advected upward from the subsurface. As a result of alkalinity generation during sulfate-coupled methane oxidation, authigenic carbonates form slabs, nodules, and extensive pavements. These carbonates shape the landscape within methane seeps, persist long after methane flux is diminished, and in some cases are incorporated into the geologic record. In this study, microbial assemblages from 134 native and experimental samples across 5,500 km, representing a range of habitat substrates (carbonate nodules and slabs, sediment, bottom water, and wood) and seepage conditions (active and low activity), were analyzed to address two fundamental questions of seep microbial ecology: (i) whether carbonates host distinct microbial assemblages and (ii) how sensitive microbial assemblages are to habitat substrate type and temporal shifts in methane seepage flux. Through massively parallel 16S rRNA gene sequencing and statistical analysis, native carbonates are shown to be reservoirs of distinct and highly diverse seep microbial assemblages. Unique coupled transplantation and colonization experiments on the seafloor demonstrated that carbonate-associated microbial assemblages are resilient to seep quiescence and reactive to seep activation over 13 months. Various rates of response to simulated seep quiescence and activation are observed among similar phylogenies (e.g., Chloroflexi operational taxonomic units) and similar metabolisms (e.g., putative S oxidizers), demonstrating the wide range of microbial sensitivity to changes in seepage flux. These results imply that carbonates do not passively record a time-integrated history of seep microorganisms but rather host distinct, diverse, and dynamic microbial assemblages. IMPORTANCE Since their discovery in 1984, the global distribution and importance of marine methane seeps have become increasingly clear. Much of our understanding of methane seep microorganisms-from metabolisms to community ecology-has stemmed from detailed studies of seep sediments. However, it has become apparent that carbonates represent a volumetrically significant habitat substrate at methane seeps. Through combined in situ characterization and incubation experiments, this study demonstrates that carbonates host microbial assemblages distinct from and more diverse than those of other seep habitats. This emphasizes the importance of seep carbonates as biodiversity locales. Furthermore, we demonstrate that carbonate-associated microbial assemblages are well adapted to withstand fluctuations in methane seepage, and we gain novel insight into particular taxa that are responsive (or recalcitrant) to changes in seep conditions.