Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2018
Paulsen, ML, Andersson AJ, Aluwihare L, Cyronak T, D'Angelo S, Davidson C, Elwany H, Giddings SN, Page HN, Porrachia M, Schroeter S.  2018.  Temporal changes in seawater carbonate chemistry and carbon export from a Southern California estuary. Estuaries and Coasts. 41:1050-1068.   10.1007/s12237-017-0345-8   AbstractWebsite

Estuaries are important subcomponents of the coastal ocean, but knowledge about the temporal and spatial variability of their carbonate chemistry, as well as their contribution to coastal and global carbon fluxes, are limited. In the present study, we measured the temporal and spatial variability of biogeochemical parameters in a saltmarsh estuary in Southern California, the San Dieguito Lagoon (SDL). We also estimated the flux of dissolved inorganic carbon (DIC) and total organic carbon (TOC) to the adjacent coastal ocean over diel and seasonal timescales. The combined net flux of DIC and TOC (FDIC + TOC) to the ocean during outgoing tides ranged from - 1.8 +/- 0.5 x 10(3) to 9.5 +/- 0.7 x 10(3) mol C h(-1) during baseline conditions. Based on these fluxes, a rough estimate of the net annual export of DIC and TOC totaled 10 +/- 4 x 10(6) mol C year(-1). Following a major rain event (36 mm rain in 3 days), FDIC + TOC increased and reached values as high as 29.0 +/- 0.7 x 10(3) mol C h(-1). Assuming a hypothetical scenario of three similar storm events in a year, our annual net flux estimate more than doubled to 25 +/- 4 x 10(6) mol C year(-1). These findings highlight the importance of assessing coastal carbon fluxes on different timescales and incorporating event scale variations in these assessments. Furthermore, for most of the observations elevated levels of total alkalinity (TA) and pH were observed at the estuary mouth relative to the coastal ocean. This suggests that SDL partly buffers against acidification of adjacent coastal surface waters, although the spatial extent of this buffering is likely small.

2017
Hansman, RL, Thurber AR, Levin LA, Aluwihare LI.  2017.  Methane fates in the benthos and water column at cold seep sites along the continental margin of Central and North America. Deep-Sea Research Part I-Oceanographic Research Papers. 120:122-131.   10.1016/j.dsr.2016.12.016   AbstractWebsite

The potential influence of methane seeps on carbon cycling is a key question for global assessments, but the study of carbon cycling in surface sediments and the water column of cold seep environments is complicated by the high temporal and spatial variability of fluid and gas fluxes at these sites. In this study we directly examined carbon sources supporting benthic and planktonic food webs at venting methane seeps using isotopic and molecular approaches that integrate this variability. At four seep environments located along North and Central America, microorganisms from two size fractions were collected over several days from 2800 to 90501 of seawater to provide a time-integrated measure of key microbial groups and the carbon sources supporting the overall planktonic microbial community. In addition to water column measurements, the extent of seafloor methane release was estimated at two of the sites by examining the stable carbon isotopic signature (delta C-13) of benthic metazoan infauna. This signature reveals carbon sources fueling the base of the food chain and thus provides a metric that represents a time-integrated view of the dominant microbial processes within the sediment. The stable carbon isotopic composition of microbial DNA (delta C-13-DNA), which had values between -17.0 and -19.5%(0), indicated that bulk planktonic microbial production was not ultimately linked to methane or other C-13-depleted seep-derived carbon sources. Instead these data support the importance of organic carbon derived from either photo- or chemoautotrophic CO2 fixation to the planktonic food web. Results of qPCR of microbial DNA sequences coding for a subunit of the particulate methane monooxygenase gene (pmoA) showed that only a small percentage of the planktonic microbial community were potential methane oxidizers possessing pmoA (< 5% of 16S rRNA gene copies). There was an overall decrease of C-13-depleted carbon fueling the benthic metazoan community from 3 to 5 cm below the seafloor to the sediment surface, reflecting limited use of isotopically depleted carbon at the sediment surface. Rare methane emission as indicated by limited aerobic methane oxidation acts to corroborate our findings for the planktonic microbial community.