Export 4 results:
Sort by: Author Title [ Type  (Asc)] Year
Daniel, P, Jeremiah J. M, Emily K, Mingxun W, Margot E. W, Eric E. A, Lihini I. A, Pieter C. D.  2019.  Non-Targeted Metabolomics Enables the Prioritization and Tracking of Anthropogenic Pollutants in Coastal Seawater.   10.26434/chemrxiv.9817133.v1   Abstract

Anthropogenic pollutants inundate marine ecosystems as human population growth and urbanization rapidly increase along the coast. Our analytical methods are typically aimed at measuring and monitoring a restricted number of compounds. To prioritize coastal anthropogenic impacts in a comprehensive fashion, we applied large-scale non-targeted liquid chromatography tandem mass spectrometry. We integrated an advanced data analysis pipeline that allows scalable comparison of chemotypes between samples in addition to expanded compound annotation using molecular networking. Using this workflow, we explored the chemical impacts of a major rain event in January 2018 in coastal San Diego, USA. We observed the seawater chemotype shift significantly after the rain event. Molecular drivers of this shift could be attributed to multiple anthropogenic compounds, such as pesticides, cleaning products, drugs and chemical additives that could be connected to potential point sources. Expanding the search of identified xenobiotics to other public tandem mass spectrometry datasets, we could further contextualize their origin and show their potential importance in other ecosystems. Ultimately, the mass spectrometry and data analysis pipeline applied here offer a scalable framework for future molecular mapping and monitoring of marine ecosystems, which we hope will contribute to a more deliberate assessment of how chemical pollution impacts marine environments.

Journal Article
Prather, KA, Bertram TH, Grassian VH, Deane GB, Stokes MD, DeMott PJ, Aluwihare LI, Palenik BP, Azam F, Seinfeld JH, Moffet RC, Molina MJ, Cappa CD, Geiger FM, Roberts GC, Russell LM, Ault AP, Baltrusaitis J, Collins DB, Corrigan CE, Cuadra-Rodriguez LA, Ebben CJ, Forestieri SD, Guasco TL, Hersey SP, Kim MJ, Lambert WF, Modini RL, Mui W, Pedler BE, Ruppel MJ, Ryder OS, Schoepp NG, Sullivan RC, Zhao DF.  2013.  Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. Proceedings of the National Academy of Sciences of the United States of America. 110:7550-7555.   10.1073/pnas.1300262110   AbstractWebsite

The production, size, and chemical composition of sea spray aerosol (SSA) particles strongly depend on seawater chemistry, which is controlled by physical, chemical, and biological processes. Despite decades of studies in marine environments, a direct relationship has yet to be established between ocean biology and the physicochemical properties of SSA. The ability to establish such relationships is hindered by the fact that SSA measurements are typically dominated by overwhelming background aerosol concentrations even in remote marine environments. Herein, we describe a newly developed approach for reproducing the chemical complexity of SSA in a laboratory setting, comprising a unique ocean-atmosphere facility equipped with actual breaking waves. A mesocosm experiment was performed in natural seawater, using controlled phytoplankton and heterotrophic bacteria concentrations, which showed SSA size and chemical mixing state are acutely sensitive to the aerosol production mechanism, as well as to the type of biological species present. The largest reduction in the hygroscopicity of SSA occurred as heterotrophic bacteria concentrations increased, whereas phytoplankton and chlorophyll-a concentrations decreased, directly corresponding to a change in mixing state in the smallest (60-180 nm) size range. Using this newly developed approach to generate realistic SSA, systematic studies can now be performed to advance our fundamental understanding of the impact of ocean biology on SSA chemical mixing state, heterogeneous reactivity, and the resulting climate-relevant properties.

Eglinton, TI, Aluwihare LI, Bauer JE, Druffel ERM, McNichol AP.  1996.  Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating. Analytical Chemistry. 68:904-912.   10.1021/ac9508513   AbstractWebsite

This paper describes the application of a novel, practical approach for isolation of individual compounds from complex organic matrices for natural abundance radiocarbon measurement. This is achieved through the use of automated preparative capillary gas chromatography (PCGC) to separate and recover sufficient quantities of individual target compounds for C-14 analysis by accelerator mass spectrometry (AMS). We developed and tested this approach using a suite of samples (plant lipids, petroleums) whose ages spanned the C-14 time scale and which contained a variety of compound types (fatty acids, sterols, hydrocarbons), Comparison of individual compound and bulk radiocarbon signatures for the isotopically homogeneous samples studied revealed that Delta(14)C values generally agreed well (+/- 10%). Background contamination was assessed at each stage of the isolation procedure, and incomplete solvent removal prior to combustion was the only significant source of additional carbon, Isotope fractionation was addressed through compound-specific stable carbon isotopic analyses, Fractionation of isotopes during isolation of individual compounds was minimal (< 5 parts per thousand for delta(13)C), provided the entire peak was collected during PCGC, Trapping of partially coeluting peaks did cause errors, and these results highlight the importance of conducting stable carbon isotopic measurements of each trapped compound in concert with AMS for reliable radiocarbon measurements, The addition of carbon accompanying derivatization of functionalized compounds (e.g., fatty acids and sterols) prior to chromatographic separation represents a further source of potential error, This contribution can be removed using a simple isotopic mass balance approach, Based on these preliminary results, the PCGC-based approach holds promise for accurately determining C-14 ages on compounds specific to a given source within complex, heterogeneous samples.

Paulsen, ML, Andersson AJ, Aluwihare L, Cyronak T, D'Angelo S, Davidson C, Elwany H, Giddings SN, Page HN, Porrachia M, Schroeter S.  2018.  Temporal changes in seawater carbonate chemistry and carbon export from a Southern California estuary. Estuaries and Coasts. 41:1050-1068.   10.1007/s12237-017-0345-8   AbstractWebsite

Estuaries are important subcomponents of the coastal ocean, but knowledge about the temporal and spatial variability of their carbonate chemistry, as well as their contribution to coastal and global carbon fluxes, are limited. In the present study, we measured the temporal and spatial variability of biogeochemical parameters in a saltmarsh estuary in Southern California, the San Dieguito Lagoon (SDL). We also estimated the flux of dissolved inorganic carbon (DIC) and total organic carbon (TOC) to the adjacent coastal ocean over diel and seasonal timescales. The combined net flux of DIC and TOC (FDIC + TOC) to the ocean during outgoing tides ranged from - 1.8 +/- 0.5 x 10(3) to 9.5 +/- 0.7 x 10(3) mol C h(-1) during baseline conditions. Based on these fluxes, a rough estimate of the net annual export of DIC and TOC totaled 10 +/- 4 x 10(6) mol C year(-1). Following a major rain event (36 mm rain in 3 days), FDIC + TOC increased and reached values as high as 29.0 +/- 0.7 x 10(3) mol C h(-1). Assuming a hypothetical scenario of three similar storm events in a year, our annual net flux estimate more than doubled to 25 +/- 4 x 10(6) mol C year(-1). These findings highlight the importance of assessing coastal carbon fluxes on different timescales and incorporating event scale variations in these assessments. Furthermore, for most of the observations elevated levels of total alkalinity (TA) and pH were observed at the estuary mouth relative to the coastal ocean. This suggests that SDL partly buffers against acidification of adjacent coastal surface waters, although the spatial extent of this buffering is likely small.