Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2013
Niemann, H, Linke P, Knittel K, Macpherson E, Boetius A, Bruckmann W, Larvik G, Wallmann K, Schacht U, Omoregie E, Hilton D, Brown K, Rehder G.  2013.  Methane-carbon flow into the benthic food web at cold seeps - a case study from the Costa Rica Subduction Zone. Plos One. 8   10.1371/journal.pone.0074894   AbstractWebsite

Cold seep ecosystems can support enormous biomasses of free-living and symbiotic chemoautotrophic organisms that get their energy from the oxidation of methane or sulfide. Most of this biomass derives from animals that are associated with bacterial symbionts, which are able to metabolize the chemical resources provided by the seeping fluids. Often these systems also harbor dense accumulations of non-symbiotic megafauna, which can be relevant in exporting chemosynthetically fixed carbon from seeps to the surrounding deep sea. Here we investigated the carbon sources of lithodid crabs (Paralomis sp.) feeding on thiotrophic bacterial mats at an active mud volcano at the Costa Rica subduction zone. To evaluate the dietary carbon source of the crabs, we compared the microbial community in stomach contents with surface sediments covered by microbial mats. The stomach content analyses revealed a dominance of epsilonproteobacterial 16S rRNA gene sequences related to the free-living and epibiotic sulfur oxidiser Sulfurovum sp. We also found Sulfurovum sp. as well as members of the genera Arcobacter and Sulfurimonas in mat-covered surface sediments where Epsilonproteobacteria were highly abundant constituting 10% of total cells. Furthermore, we detected substantial amounts of bacterial fatty acids such as i-C15:0 and C17:1 omega 6c with stable carbon isotope compositions as low as -53 parts per thousand in the stomach and muscle tissue. These results indicate that the white microbial mats at Mound 12 are comprised of Epsilonproteobacteria and that microbial mat-derived carbon provides an important contribution to the crab's nutrition. In addition, our lipid analyses also suggest that the crabs feed on other C-13-depleted organic matter sources, possibly symbiotic megafauna as well as on photosynthetic carbon sources such as sedimentary detritus.

2004
Tryon, MD, Brown KM.  2004.  Fluid and chemical cycling at Bush Hill: Implications for gas- and hydrate-rich environments. Geochemistry Geophysics Geosystems. 5   10.1029/2004gc000778   AbstractWebsite

The results of a deployment of aqueous flux meters at the Bush Hill hydrate mound show that persistent hydrologic instability is a primary feature of the globally abundant gas- and hydrate-rich cold seep environment. Seven flux meters were deployed for 14 weeks in the area of the Bush Hill hydrate mound. Instruments were deployed on microbial mats, bivalves, adjacent to the surface hydrate mound, and a site without visible fauna. Flow rates were observed to range from downflow of 0.01 mm/day to upflow of >15 mm/day. Temporal variability and a major hydrological event were observed to occur on all instruments. There is evidence that this event was related to a gas expulsion episode. The two instruments which exhibited downflow during the event were near surface hydrates and bubbling vents. Nearby instruments recorded a rapid increase in flow rates at the time of the event with a subsequent decrease in rates to the previous background values. Two instruments showed significant output of seawater-like fluids, while the others output typical methane seep-type pore fluids. These results at a passive margin site, along with our previously published convergent margin results at gas- rich northeast Pacific cold seeps (Hydrate Ridge, Eel River margin), illustrate the hydrologic complexity of these environments. We now propose that these and our earlier results are characteristic of seafloor environments which have abundant free gas and hydrates. These mechanisms have major consequences for the near-surface geochemical and microbial environment and for the way we interpret measurements made in these areas.