Publications

Export 53 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Stukel, MR, Kelly TB, Aluwihare LI, Barbeau KA, Goericke R, Krause JW, Landry MR, Ohman MD.  2019.  The Carbon:(234)Thorium ratios of sinking particles in the California current ecosystem 1: relationships with plankton ecosystem dynamics. Marine Chemistry. 212:1-15.   10.1016/j.marchem.2019.01.003   AbstractWebsite

We investigated variability in the C:Th-234 ratio of sinking particles and its relationship to changing water column characteristics and plankton ecological dynamics during 29 Lagrangian experiments conducted on six cruises of the California Current Ecosystem Long-Term Ecological Research (CCE-LTER) Program. C:Th-234 ratios of sinking particles collected by a surface-tethered sediment trap ((CThST)-Th-:234) varied from 2.3 to 20.5 mu mol C dpm(-1) over a depth range of 47-150 m. C:Th-234(ST) was significantly greater (by a factor of 1.8) than C:Th-234 ratios of suspended > 51-mu m particles collected in the same water parcels with in situ pumps. C:Th-234 ratios of large (> 200-mu m) sinking particles also exceeded those of smaller sinking particles. C:Th-234(ST) decreased with depth from the base of the euphotic zone through the upper twilight zone. C:Th-234(ST) was positively correlated with several indices of ecosystem productivity including particulate organic carbon (POC) and chlorophyll (Chl) concentrations, mesozooplankton biomass, and the fraction of Chl > 20-mu m. Principal component analysis and multiple linear regression suggested that decaying phytoplankton blooms exhibited higher C:Th-234(ST) than actively growing blooms at similar biomass levels. C:Th-234(ST) was positively correlated with indices of the fractional contribution of fecal pellets in sediment traps when the proportion of fecal pellets was low in the traps, likely because of a correlation between mesozooplankton biomass and other indices of ecosystem productivity. However, when fecal pellets were a more important component of sinking material, C:Th-234(ST) decreased with increasing fecal pellet content. C:Th-234(ST) was also positively correlated with the Si:C ratio of sinking particles. Across the dataset (and across depths) a strong correlation was found between C:Th-234(ST) and the ratio of vertically-integrated POC to vertically-integrated total water column Th-234 (C-v:Th-234(tot)). A mechanistic one-layer, two-box model of thorium sorption and desorption was invoked to explain this correlation. Two empirical models (one using C-v:Th-234(tot); one using depth and vertically-integrated Chl) were developed to predict C:Th-234 ratios in this coastal upwelling biome. The former regression (log(10)(C:Th-234(ST)) = 0.43 x log(10)(C-v:Th-234(tot)) + 0.53) was found to also be a reasonable predictor for C:Th-234(ST) from diverse regions including the Southern Ocean, Sargasso Sea, Subarctic North Pacific, and Eastern Tropical North Pacific.

Stukel, MR, Aluwihare LI, Barbeau KA, Chekalyuk AM, Goericke R, Miller AJ, Ohman MD, Ruacho A, Song H, Stephens BM, Landry MR.  2017.  Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction. Proceedings of the National Academy of Sciences of the United States of America. 114:1252-1257.   10.1073/pnas.1609435114   AbstractWebsite

Enhanced vertical carbon transport (gravitational sinking and subduction) at mesoscale ocean fronts may explain the demonstrated imbalance of new production and sinking particle export in coastal upwelling ecosystems. Based on flux assessments from U-238:Th-234 disequilibrium and sediment traps, we found 2 to 3 times higher rates of gravitational particle export near a deep-water front (305 mg C.m(-2).d(-1)) compared with adjacent water or to mean (nonfrontal) regional conditions. Elevated particle flux at the front wasmechanistically linked to Fe-stressed diatoms and high-mesozooplankton fecal pellet production. Using a data assimilative regional ocean model fit to measured conditions, we estimate that an additional similar to 225 mg C.m(-2).d(-1) was exported as subduction of particle-rich water at the front, highlighting a transport mechanism that is not captured by sediment traps and is poorly quantified by most models and in situ measurements. Mesoscale fronts may be responsible for over a quarter of total organic carbon sequestration in the California Current and other coastal upwelling ecosystems.

Stuart, RK, Bundy R, Buck K, Ghassemain M, Barbeau K, Palenik B.  2017.  Copper toxicity response influences mesotrophic Synechococcus community structure. Environmental Microbiology. 19:756-769.   10.1111/1462-2920.13630   AbstractWebsite

Picocyanobacteria from the genus Synechococcus are ubiquitous in ocean waters. Their phylogenetic and genomic diversity suggests ecological niche differentiation, but the selective forces influencing this are not well defined. Marine picocyanobacteria are sensitive to Cu toxicity, so adaptations to this stress could represent a selective force within, and between, species', also known as clades. Here, we compared Cu stress responses in cultures and natural populations of marine Synechococcus from two co-occurring major mesotrophic clades (I and IV). Using custom microarrays and proteomics to characterize expression responses to Cu in the lab and field, we found evidence for a general stress regulon in marine Synechococcus. However, the two clades also exhibited distinct responses to copper. The Clade I representative induced expression of genomic island genes in cultures and Southern California Bight populations, while the Clade IV representative downregulated Fe-limitation proteins. Copper incubation experiments suggest that Clade IV populations may harbour stress-tolerant subgroups, and thus fitness tradeoffs may govern Cu-tolerant strain distributions. This work demonstrates that Synechococcus has distinct adaptive strategies to deal with Cu toxicity at both the clade and subclade level, implying that metal toxicity and stress response adaptations represent an important selective force for influencing diversity within marine Synechococcus populations.

Semeniuk, DM, Bundy RM, Payne CD, Barbeau KA, Maldonado MT.  2015.  Acquisition of organically complexed copper by marine phytoplankton and bacteria in the northeast subarctic Pacific Ocean. Marine Chemistry. 173:222-233.   10.1016/j.marchem.2015.01.005   AbstractWebsite

Copper (Cu) is an essential micronutrient for marine phytoplankton, but can cause toxicity at elevated intracellular concentrations. The majority of Cu (>99.9%) in oceanic surface waters is bound to strong organic ligands, presumably produced by prokaryotes to detoxify Cu. Although laboratory studies have demonstrated that organically complexed Cu may be bioavailable to marine eukaryotic phytoplankton, the bioavailability of Cu organic complexes to indigenous marine phytoplankton has not been examined in detail. Using the carrier free radioisotope Cu-67 at an iron limited station in the northeast subarctic Pacific Ocean, we performed size fractionated short-term Cu uptake assays with three Cu(II)-chelates, and Cu-67 bound to the strong in situ ligands, with or without additions of weak Cu(I) ligands. Estimates of the maximum supply of inorganic Cu (Cu') to the cell surface of eukaryotic phytoplankton were unable to account for the observed Cu uptake rates from the in situ ligands and two of the three added Cu(II)-chelates. Addition of 10 nM weak organic Cu(I) ligands enhanced uptake of Cu bound to the in situ ligands. Thus, Cu within the in situ and strong artificial Cu(II) organic ligands was accessible to the phytoplankton community via various possible Cu uptake strategies, including; cell surface enzymatically mediated reduction of Cu(II) to Cu(I), the substrate of the high-affinity Cu transport system in eukaryotes; or ligand exchange between weak Cu-binding ligands and the cellular Cu transporters. During a 14-hour uptake assay, particulate Cu concentrations reached a plateau in most treatments. Losses were observed in some treatments, especially in the small size fractions (<5 mu m), corresponding with faster initial Cu uptake rates. This may indicate that Cu cycling is rapid between particulate and dissolved phases due to cellular efflux or remineralization by micrograzers. The acquisition of Cu from the strong in situ ligands puts into question the historic role attributed to Cu binding ligands in decreasing Cu bioavailability. (C) 2015 Elsevier B.V. All rights reserved.

Semeniuk, DM, Taylor RL, Bundy RM, Johnson WK, Cullen JT, Robert M, Barbeau KA, Maldonado MT.  2016.  Iron-copper interactions in iron-limited phytoplankton in the northeast subarctic Pacific Ocean. Limnology and Oceanography. 61:279-297.   10.1002/lno.10210   AbstractWebsite

In August 2010, iron (Fe) and Fe and copper (Cu) addition incubation experiments were conducted at two low Fe stations (P20 and P26) along Line P, off the western coast of British Columbia, to investigate Cu physiology in Fe- and Fe-light co-limited phytoplankton. Chlorophyll a concentrations ([Chl a]), maximum variable fluorescence yield (F-v/F-m), and Fe uptake rates by the Cu-dependent high-affinity Fe transport system (HAFeTS) were measured. Additions of Fe resulted in an increase in [Chl a] and F-v/F-m at both stations compared with the controls, regardless of light availability, and confirmed that the phytoplankton communities were Fe-limited. Uptake of Fe by the HAFeTS in both incubations increased with the addition of Fe, and likely reflects luxury Fe uptake and storage. While the in situ inorganic Cu concentrations were similar to those that can induce Cu-limitation in laboratory cultures, increasing Cu availability had no effect on biomass accumulation during both incubations, regardless of Fe availability or light regime. At P26, additions of 1 nmol L-1 CuSO4 resulted in a short-term increase in F-v/F-m of the phytoplankton community, and an increase in Fe uptake rates by large phytoplankton (>5 mu m), but only when light was not limiting. These data confirm a complex interaction between light, Fe and Cu physiology in indigenous phytoplankton communities, and suggest that these interactions may be both spatially heterogeneous and different for different phytoplankton size classes.

Semeniuk, DM, Bundy RM, Posacka AM, Robert M, Barbeau KA, Maldonado MT.  2016.  Using 67Cu to study the biogeochemical cycling of copper in the northeast subarctic Pacific Ocean. Frontiers in Marine Science. 3:78.   10.3389/fmars.2016.00078   Abstract

Microbial copper (Cu) nutrition and dissolved Cu speciation were surveyed along Line P, a coastal to open ocean transect that extends from the coast of British Columbia, Canada, to the high-nutrient-low-chlorophyll (HNLC) zone of the northeast subarctic Pacific Ocean. Steady-state size fractionated Cu uptake rates and Cu:C assimilation ratios were determined at in situ Cu concentrations and speciation using a 67Cu tracer method. The cellular Cu:C ratios that we measured (~30 µmol Cu mol C-1) are similar to recent estimates using synchrotron x-ray fluorescence (SXRF), suggesting that the 67Cu method can determine in situ metabolic Cu demands. We examined how environmental changes along the Line P transect influenced Cu metabolism in the sub-microplankton community. Cellular Cu:C assimilation ratios and uptake rates were compared with net primary productivity, bacterial abundance and productivity, total dissolved Cu, Cu speciation, and a suite of other chemical and biological parameters. Total dissolved Cu concentrations ([Cu]d) were within a narrow range (1.46 to 2.79 nM), and Cu was bound to a ~5-fold excess of strong ligands with conditional stability constants ( ) of ~1014. Free Cu2+ concentrations were low (pCu 14.4 to 15.1), and total and size fractionated net primary productivity (NPPV; µg C L-1 d-1) were negatively correlated with inorganic Cu concentrations ([Cu′]). We suggest this is due to greater Cu′ drawdown by faster growing phytoplankton populations. Using the relationship between [Cu′] drawdown and NPPV, we calculated a regional photosynthetic Cu:C drawdown export ratio between 1.5 and 15 µmol Cu mol C-1, and a mixed layer residence time (2.5 to 8 years) that is similar to other independent estimates (2-12 years). Total particulate Cu uptake rates were between 22 and 125 times faster than estimates of Cu export; this is possibly mediated by rapid cellular Cu uptake and efflux by phytoplankton and bacteria or the effects of grazers and bacterial remineralization on dissolved Cu. These results provide a more detailed understanding of the interactions between Cu speciation and microorganisms in seawater, and present evidence that marine phytoplankton modify Cu speciation in the open ocean.

R
Roe, KL, Barbeau K, Mann EL, Haygood MG.  2012.  Acquisition of iron by Trichodesmium and associated bacteria in culture. Environmental Microbiology. 14:1681-1695.   10.1111/j.1462-2920.2011.02653.x   AbstractWebsite

Trichodesmium colonies contain an abundant microbial consortium that is likely to play a role in nutrient cycling within the colony. This study used laboratory cultures of Trichodesmium and two genome-sequenced strains of bacteria typical of Trichodesmium-associated microbes to develop an understanding of the cycling of iron, a potentially limiting micronutrient, within Trichodesmium colonies. We found that the ferric siderophores desferrioxamine B and aerobactin were not readily bioavailable to Trichodesmium, relative to ferric chloride or citrate-associated iron. In contrast, the representative bacterial strains we studied were able to acquire iron from all of the iron sources, implying that naturally occurring Trichodesmium-associated bacteria may be capable of utilizing a more diverse array of iron sources than Trichodesmium. From the organism-specific uptake data collected in this study, a theoretical Trichodesmium colony was designed to model whole colony iron uptake. The bacteria accounted for most (> 70%) of the iron acquired by the colony, highlighting the importance of determining organism-specific uptake in a complex environment. Our findings suggest that, although they may share the same micro-environment, Trichodesmium and its colony-associated microbial cohort may differ substantially in terms of iron acquisition strategy.

Roe, KL, Hogle SL, Barbeau KA.  2013.  Utilization of heme as an iron source by marine alphaproteobacteria in the roseobacter clade. Applied and Environmental Microbiology. 79:5753-5762.   10.1128/aem.01562-13   AbstractWebsite

The bioavailability and utilization of porphyrin-bound iron, specifically heme, by marine microorganisms have rarely been examined. This study used Ruegeria sp. strain TrichCH4B as a model organism to study heme acquisition by a member of the Roseobacter clade. Analogs of known heme transporter proteins were found within the Ruegeria sp. TrichCH4B genome. The identified heme uptake and utilization system appears to be functional, as the heme genes were upregulated under iron stress, the bacterium could grow on ferric-porphyrin complexes as the sole iron source, and internalization of(55) Fe from ferric protoporphyrin IX was observed. The potential ability to utilize heme in the Roseobacter clade appears to be common, as half of the isolates in the RoseoBase database were found to have a complete heme uptake system. A degenerate primer set was designed and successfully used to identify the putative heme oxygenase gene (hmus) in the roseobacter heme uptake system from diverse nonenriched marine environments. This study found that members of the Roseobacter clade are capable of utilizing heme as an iron source and that this capability may be present in all types of marine environments. The results of this study add a new perspective to the current picture of iron cycling in marine systems, whereby relatively refractory intracellular pools of heme-bound iron may be taken up quickly and directly reincorporated into living bacteria without previous degradation or the necessity of a siderophore intermediate.

Roe, KL, Barbeau KA.  2014.  Uptake mechanisms for inorganic iron and ferric citrate in Trichodesmium erythraeum IMS101. Metallomics. 6:2042-2051.   10.1039/c4mt00026a   AbstractWebsite

Growth of the prevalent marine organism Trichodesmium can be limited by iron in natural and laboratory settings. This study investigated the iron uptake mechanisms that the model organism T. erythraeum IMS101 uses to acquire iron from inorganic iron and iron associated with the weak ligand complex, ferric citrate. IMS101 was observed to employ two different iron uptake mechanisms: superoxide-mediated reduction of inorganic iron in the surrounding milieu and a superoxide-independent uptake system for ferric citrate complexes. While the detailed pathway of ferric citrate utilization remains to be elucidated, transport of iron from this complex appears to involve reduction and/or exchange of the iron out of the complex prior to uptake, either at the outer membrane of the cell or within the periplasmic space. Various iron uptake strategies may allow Trichodesmium to effectively scavenge iron in oligotrophic ocean environments.

P
Pizeta, I, Sander SG, Hudson RJM, Omanovic D, Baars O, Barbeau KA, Buck KN, Bundy RM, Carrasco G, Croot PL, Garnier C, Gerringa LJA, Gledhill M, Hirose K, Kondo Y, Laglera LM, Nuester J, Rijkenberg MJA, Takeda S, Twining BS, Wells M.  2015.  Interpretation of complexometric titration data: An intercomparison of methods for estimating models of trace metal complexation by natural organic ligands. Marine Chemistry. 173:3-24.   10.1016/j.marchem.2015.03.006   AbstractWebsite

With the common goal of more accurately and consistently quantifying ambient concentrations of free metal ions and natural organic ligands in aquatic ecosystems, researchers from 15 laboratories that routinely analyze trace metal speciation participated in an intercomparison of statistical methods used to model their most common type of experimental dataset, the complexometric titration. All were asked to apply statistical techniques that they were familiar with to model synthetic titration data that are typical of those obtained by applying state-of-the-art electrochemical methods - anodic stripping voltammetry (ASV) and competitive ligand equilibration-adsorptive cathodic stripping voltammetry (CLE-ACSV) - to the analysis of natural waters. Herein, we compare their estimates for parameters describing the natural ligands, examine the accuracy of inferred ambient free metal ion concentrations (]M-f]), and evaluate the influence of the various methods and assumptions used on these results. The ASV-type titrations were designed to test each participant's ability to correctly describe the natural ligands present in a sample when provided with data free of measurement error, i.e., random noise. For the three virtual samples containing just one natural ligand, all participants were able to correctly identify the number of ligand classes present and accurately estimate their parameters. For the four samples containing two or three ligand classes, a few participants detected too few or too many classes and consequently reported inaccurate 'measurements' of ambient [M-f]. Since the problematic results arose from human error rather than any specific method of analyzing the data, we recommend that analysts should make a practice of using one's parameter estimates to generate simulated (back-calculated) titration curves for comparison to the original data. The root-mean-squared relative error between the fitted observations and the simulated curves should be comparable to the expected precision of the analytical method and upon visual inspection the distribution of residuals should not be skewed. Modeling the synthetic, CLE-ACSV-type titration dataset, which comprises 5 titration curves generated at different analytical-windows or levels of competing ligand added to the virtual sample, proved to be more challenging due to the random measurement error that was incorporated. Comparison of the submitted results was complicated by the participants' differing interpretations of their task. Most adopted the provided 'true' instrumental sensitivity in modeling the CLE-ACSV curves, but several estimated sensitivities using internal calibration, exactly as is required for actual samples. Since most fitted sensitivities were biased low, systematic error in inferred ambient [M-f] and in estimated weak ligand (L-2) concentrations resulted. The main distinction between the mathematical approaches taken by participants lies in the functional form of the speciation model equations, with their implicit definition of independent and dependent or manipulated variables. In 'direct modeling', the dependent variable is the measured [M-f] (or I-p) and the total metal concentration ([M](T)) is considered independent In other, much more widely used methods of analyzing titration data - classical linearization, best known as van den Berg/Ruzic and isotherm fitting by nonlinear regression, best known as the langmuir or Gerringa methods - [M-f] is defined as independent and the dependent variable calculated from both [M](T) and [M-f]. Close inspection of the biases and variability in the estimates of ligand parameters and in predictions of ambient [M-f] revealed that the best results were obtained by the direct approach. Linear regression of transformed data yielded the largest bias and greatest variability, while non-linear isotherm fitting generated results with mean bias comparable to direct modeling, but also with greater variability. Participants that performed a unified analysis of ACSV titration curves at multiple detection windows for a sample improved their results regardless of the basic mathematical approach taken. Overall, the three most accurate sets of results were obtained using direct modeling of the unified multiwindow dataset, while the single most accurate set of results also included simultaneous calibration. We therefore recommend that where sample volume and time permit, titration experiments for all natural water samples be designed to include two or more detection windows, especially for coastal and estuarine waters. It is vital that more practical experimental designs for multi-window titrations be developed. Finally, while all mathematical approaches proved to be adequate for some datasets, matrix-based equilibrium models proved to be most naturally suited for the most challenging cases encountered in this work, i.e., experiments where the added ligand in ACSV became titrated. The ProMCC program (Omanovic et al., this issue) as well as the Excel Add-in based KINETEQL Multiwindow Solver spreadsheet (Hudson, 2014) have this capability and have been made available for public use as a result of this intercomparison exercise. (C) 2015 The Authors. Published by Elsevier B.V.

O
Ohman, MD, Barbeau K, Franks PJS, Goericke R, Landry MR, Miller AJ.  2013.  Ecological transitions in a coastal upwelling ecosystem. Oceanography. 26:210-219. AbstractWebsite

The southern California Current Ecosystem (CCE) is a dynamic eastern boundary current ecosystem that is forced by ocean-atmosphere variability on interannual, multidecadal, and long-term secular time scales. Recent evidence suggests that apparent abrupt transitions in ecosystem conditions reflect linear tracking of the physical environment rather than oscillations between alternative preferred states. A space-for-time exchange is one approach that permits use of natural spatial variability in the CCE to develop a mechanistic understanding needed to project future temporal changes. The role of (sub)mesoscale frontal systems in altering rates of nutrient transport, primary and secondary production, export fluxes, and the rates of encounters between predators and prey is an issue central to this pelagic ecosystem and its future trajectory because the occurrence of such frontal features is increasing.

M
Moffett, JW, Brand LE, Croot PL, Barbeau KA.  1997.  Cu Speciation and Cyanobacterial Distribution in Harbors Subject to Anthropogenic Cu Inputs. Limnology and Oceanography. 42:789-799.: American Society of Limnology and Oceanography   10.2307/2838883   AbstractWebsite

Cu speciation was studied in four harbors on the south coast of Cape Cod, Massachusetts, that are exposed to varying degress of Cu contamination from anthropogenic sources. Copper in waters outside the harbors was complexed by ∼ 10 nM of very strong chelators, twofold higher than ambient Cu concentrations. In Eel Pond (Woods Hole) and Falmouth Inner Harbor, total dissolved Cu concentrations were 7-10-fold higher. However, because the strong chelators were saturated in these two harbors, the free Cu increased by 1,000-fold, from $\thicksim 10^13 M$ to $\thicksim 10^-10 M$ . There was no evidence for any enhanced biological production of chelators in response to the elevated Cu concentrations. However, cell densities of cyanobacteria, which have been proposed as a source of strong Cu chelators in seawater, decline drastically in the high Cu harbors. These trends are consistent with culture studies showing that Synechococcus sp., the predominant cyanophyte in these waters, shows a dramatic decrease in growth rates above a free Cu2+ level of 10-11 M. In Great Pond and Waquoit Bay, which showed no significant Cu contamination or saturation of strong ligands, cyanobacterial cell densities showed little or no decrease. Results suggest that significant anthropogenic inputs of Cu may overwhelm processes occurring in seawater that lead Cu and strong chelator concentrations to approach comparable levels.

McQuaid, JB, Kustka AB, Obornik M, Horak A, McCrow JR, Karas BJ, Zheng H, Kindeberg T, Andersson AJ, Barbeau KA, Allen AE.  2018.  Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms. Nature. 555:534-537.   10.1038/nature25982   AbstractWebsite

In vast areas of the ocean, the scarcity of iron controls the growth and productivity of phytoplankton(1,2). Although most dissolved iron in the marine environment is complexed with organic molecules(3), picomolar amounts of labile inorganic iron species (labile iron) are maintained within the euphotic zone(4) and serve as an important source of iron for eukaryotic phytoplankton and particularly for diatoms(5). Genome-enabled studies of labile iron utilization by diatoms have previously revealed novel iron responsive transcripts(6,7), including the ferric iron-concentrating protein ISIP2A(8), but the mechanism behind the acquisition of picomolar labile iron remains unknown. Here we show that ISIP2A is a phytotransferrin that independently and convergently evolved carbonate ion-coordinated ferric iron binding. Deletion of ISIP2A disrupts high-affinity iron uptake in the diatom Phaeodactylum tricornutum, and uptake is restored by complementation with human transferrin. ISIP2A is internalized by endocytosis, and manipulation of the seawater carbonic acid system reveals a second order dependence on the concentrations of labile iron and carbonate ions. In P. tricornutum, the synergistic interaction of labile iron and carbonate ions occurs at environmentally relevant concentrations, revealing that carbonate availability co-limits iron uptake. Phytotransferrin sequences have a broad taxonomic distribution(8) and are abundant in marine environmental genomic datasets(9,10), suggesting that acidification-driven declines in the concentration of seawater carbonate ions will have a negative effect on this globally important eukaryotic iron acquisition mechanism.

L
Landry, MR, Ohman MD, Goericke R, Stukel MR, Barbeau KA, Bundy R, Kahru M.  2012.  Pelagic community responses to a deep-water front in the California Current Ecosystem: overview of the A-Front Study. Journal of Plankton Research. 34:739-748.   10.1093/plankt/fbs025   AbstractWebsite

In October 2008, we investigated pelagic community composition and biomass, from bacteria to fish, across a sharp frontal gradient overlying deep waters south of Point Conception, California. This northsouth gradient, which we called A-Front, was formed by the eastward flow of the California Current and separated cooler mesotrophic waters of coastal upwelling origin to the north, from warm oligotrophic waters of likely mixed subarcticsubtropical origin to the south. Plankton biomass and phytoplankton growth rates were two to three times greater on the northern side, and primary production rates were elevated 5-fold to the north. Compared with either of the adjacent waters, the frontal interface was strongly enriched and uniquely defined by a subsurface bloom of large diatoms, elevated concentrations of suspension-feeding zooplankton, high bioacoustical estimates of pelagic fish and enhanced bacterial production and phytoplankton biomass and photosynthetic potential. Such habitats, though small in areal extent, may contribute disproportionately and importantly to regional productivity, nutrient cycling, carbon fluxes and trophic ecology. As a general introduction to the A-Front study, we provide an overview of its design and implementation, a brief summary of major findings and a discussion of potential mechanisms of plankton enrichment at the front.

K
Kwasnik, M, Fuhrer K, Gonin M, Barbeau K, Fernandez FM.  2007.  Performance, resolving power, and radial ion distributions of a prototype nanoelectrospray ionization resistive glass atmospheric pressure ion mobility spectrometer. Analytical Chemistry. 79:7782-7791.   10.1021/ac071226o   AbstractWebsite

In this article, we describe and characterize a novel ion mobility spectrometer constructed with monolithic resistive glass desolvation and drift regions. This instrument is equipped with switchable corona discharge and nanoelectrospray ionization sources and a Faraday plate detector. Following description of the instrument, pulsing electronics, and data acquisition system, we examine the effects of drift gas flow rate and temperature, and of the aperture grid to anode distance on the observed resolving power and sensitivity. Once optimum experimental parameters are identified, different ion gate pulse lengths, and their effect on the temporal spread of the ion packet were investigated. Resolving power ranged from an average value of 50 ms/ms for a 400-mu s ion gate pulse, up to an average value of 68 ms/ms for a 100-mu s ion gate pulse, and a 26-cm drift tube operated at 383 V cm(-1). Following these experiments, the radial distribution of ions in the drift region of the spectrometer was studied by using anodes of varying sizes, showing that the highest ionic density was located at the center of the drift tube. Finally, we demonstrate the applicability of this instrument to the study of small molecules of environmental relevance by analyzing a commercially available siderophore, deferoxamine mesylate, in both the free ligand and Fe-bound forms. Ion mobility experiments showed a dramatic shift to shorter drift times caused by conformational changes upon metal binding, in agreement with previous reversed-phase liquid chromatography observations.

King, AL, Barbeau K.  2007.  Evidence for phytoplankton iron limitation in the southern California Current System. Marine Ecology-Progress Series. 342:91-103.   10.3354/meps342091   AbstractWebsite

Observations of phytoplankton iron limitation in the world's oceans have primarily been confined to high-nutrient, low-chlorophyll (HNLC) regimes, found in the western equatorial and subarctic Pacific, Southern Ocean, and coastal upwelling zones off California and Peru. We investigated the potential for phytoplankton iron limitation in coastal transition zones (50 to 200 km offshore) of the southern California Current System, a weak upwelling regime that is relatively low in nutrients (< 4 mu mol nitrate 1(-1)) and low in chlorophyll (< 1 mu g chl a 1(-1)). In grow-out incubation experiments conducted during summer, July 2003 and 2004, phytoplankton responded to nanomolar iron additions, despite the non-HNLC initial conditions, Observed changes in phytoplankton and nutrient parameters upon iron addition were significant, although markedly lower in amplitude relative to typical grow-out experiments in HNLC regimes. While we cannot disprove alternate explanations for the observed limitation of phytoplankton growth, such as a proximate grazing control, our results indicate that phytoplankton growth in the southern California Current System is, at times, limited by the supply of iron. Based on our findings and the results of previous studies in this region, we suggest that phytoplankton biomass is generally limited by the supply of nitrate, while iron, directly or indirectly, influences macronutrient utilization, community species composition, and phytoplankton spatial and temporal distribution.

King, AL, Buck KN, Barbeau KA.  2012.  Quasi-Lagrangian drifter studies of iron speciation and cycling off Point Conception, California. Marine Chemistry. 128:1-12.   10.1016/j.marchem.2011.11.001   AbstractWebsite

The distribution and speciation of dissolved Fe (dFe) were measured during four quasi-Lagrangian drogued drifter studies (similar to 4 d duration each) that were conducted in the southern California Current System in May 2006 and April 2007. Three of the four drifter studies were within the coastal upwelling regime and one drifter study was in a warm-core anticyclonic eddy. Incubation bottle experiments were also conducted to determine the degree of phytoplankton Fe limitation and to assess changes in the concentration of Fe-binding ligands. In the coastal upwelling drifter studies, in situ dFe (1.4-1.8 nM) and macronutrients were initially high and declined over time. Fe addition incubation experiments indicated that the phytoplankton community was not Fe limited at the beginning of the coastal upwelling drifter experiments (when mu M nitrate:nM dFe ratios were similar to 7-8). By the end of two of the three drifter studies (when mu M nitrate:nM dFe ratios were similar to 12-19), Fe addition resulted in larger nitrate and silicic acid drawdown, and larger accumulations in chlorophyll a, particulate organic carbon and nitrogen, and diatom and dinoflagellate-specific carotenoid pigments. Fe speciation was measured in situ in three of the four drifter studies with stronger L-1-type ligands found to be present in excess of dFe in all samples. In Fe speciation incubation experiments. L-1-type ligand production was observed in conjunction with phytoplankton growth under Fe-limiting conditions. The results presented here support and add a quasi-Lagrangian perspective to previous observations of dFe and macronutrient cycling over space and time within the California coastal upwelling regime, including Fe limitation within the phytoplankton community in this region and the biological production of Fe-binding ligands concomitant with Fe limitation. (C) 2011 Elsevier B.V. All rights reserved.

King, AL, Barbeau KA.  2011.  Dissolved iron and macronutrient distributions in the southern California Current System. Journal of Geophysical Research-Oceans. 116   10.1029/2010jc006324   AbstractWebsite

The distribution of dissolved iron in the southern California Current System (sCCS) is presented from seven research cruises between 2002 and 2006. Dissolved iron concentrations were generally low in most of the study area (<0.5 nM), although high mixed layer and water column dissolved iron concentrations (up to 8 nM) were found to be associated with coastal upwelling, both along the continental margin and some island platforms. A significant supply of iron was probably not from a deep remineralized source but rather from the continental shelf and bottom boundary layer as identified in previous studies along the central and northern California coast. With distance offshore, dissolved iron decreased more rapidly relative to nitrate in a transition zone 10-250 km offshore during spring and summer, resulting in relatively high ratios of nitrate: dissolved iron. Higher nitrate: dissolved iron ratios could be the result of utilization and scavenging in addition to an overall lower supply of iron relative to nitrate in the offshore transition zones. The low supply of iron leads to phytoplankton iron limitation and a depletion in silicic acid relative to nitrate in the coastal upwelling and transition zones of the sCCS.

J
Jiang, MS, Barbeau KA, Selph KE, Measures CI, Buck KN, Azam F, Mitchell BG, Zhou M.  2013.  The role of organic ligands in iron cycling and primary productivity in the Antarctic Peninsula: A modeling study. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 90:112-133.   10.1016/j.dsr2.2013.01.029   AbstractWebsite

Iron (Fe) is the limiting nutrient for primary productivity in the Southern Ocean, with much of the dissolved iron (dFe) bound to organic ligands or colloids. A Fe model for the Southern Ocean (SOFe) is developed to understand the role of bacteria and organic ligands in controlling Fe cycling and productivity. The model resolves the classical food web and microbial loop, including three types of nutrients (N, Si, Fe) and two types of Fe ligands. Simulations of the zero-dimensional (0-D) model are calibrated with detailed results of shipboard grow-out incubation experiments conducted with Antarctic Peninsula phytoplankton communities during winter 2006 to provide the best estimate of key biological parameters. Then a one-dimensional (1-D) model is developed by coupling the biological model with the Regional Oceanic Modeling System (ROMS) for a site on the Antarctic Peninsula shelf, and the model parameters are further calibrated with data collected from two surveys (summer 2004 and winter 2006) in the area. The results of the numerical simulations agree reasonably well with observations. An analysis of the 1-D model results suggests that bacteria and organic ligands may play an important role in Fe cycling, which can be categorized into a relatively fast mode within the euphotic zone dominated by photo-reactions (summer d Fe residence time about 600 days) and complexation and a slow mode below with most of the dFe biologically complexed (summer dFe residence time > 10 years). The dFe removal from the euphotic zone is dominated by colloidal formation and further aggregations with additional contribution from biological uptake, and an increase of organic ligands would reduce Fe export. The decrease of Fe removal rate over depth is due to the continuous dissolution and remineralization of particulate Fe. A number of sensitivity experiments are carried out for both O-D and 1-D models to understand the importance of photo-reactive processes in primary productivity, bacterial activity, Fe speciation, and dFe residence time within the euphotic zone. The bio-availability of ligand-bound Fe (FeL) is critical to modeled high primary productivity, which is consistent with both shipboard measurements and field observations. In addition, model productivity is sensitive to photoreaction rates if FeL is not directly available for phytoplankton uptake. (C) 2013 Elsevier Ltd. All rights reserved.

H
Hopkinson, BM, Roe KL, Barbeau KA.  2008.  Heme uptake by Microscilla marina and evidence for heme uptake systems in the genomes of diverse marine bacteria. Applied and Environmental Microbiology. 74:6263-6270.   10.1128/aem.00964-08   AbstractWebsite

The ability to acquire diverse and abundant forms of iron would be expected to confer a survival advantage in the marine environment, where iron is scarce. Marine bacteria are known to use siderophores and inorganic iron, but their ability to use heme, an abundant intracellular iron form, has only been examined preliminarily. Microscilla marina, a cultured relative of a bacterial group frequently found on marine particulates, was used as a model organism to examine heme uptake. Searches of the genome revealed analogs to known heme transport proteins, and reverse transcription-quantitative PCR analysis of these genes showed that they were expressed and upregulated under iron stress and during growth on heme. M. marina was found to take up heme-bound iron and could grow on heme as a sole iron source, supporting the genetic evidence for heme transport. Similar putative heme transport components were identified in the genomes of diverse marine bacteria. These systems were found in the genomes of many bacteria thought to be particle associated but were lacking in known free-living organisms (e.g., Pelagibacter ubique and marine cyanobacteria). This distribution of transporters is consistent with the hydrophobic, light-sensitive nature of heme, suggesting that it is primarily available on phytoplankton or detritus or in nutrient-rich environments.

Hopkinson, BM, Seegers B, Hatta M, Measures CI, Mitchell BG, Barbeau KA.  2013.  Planktonic C:Fe ratios and carrying capacity in the southern Drake Passage. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 90:102-111.   10.1016/j.dsr2.2012.09.001   AbstractWebsite

The carbon to iron (C:Fe) ratio of planktonic biomass constrains net production in iron-limited regions of the ocean and is an important parameter for predicting biomass production from iron inputs. On a cruise to the southern Drake Passage in July-August 2006, we used two approaches to determine the C:Fe ratio of planktonic material: dual-radiotracer labeling and net biomass production in iron-limited grow-out experiments. There was variability in C:Fe ratios among experiments, but values from the two methods overlapped with average values of 1.4 x 10(5) (mol:mol) for the radiotracer method and 1.7 x 10(5) for the net biomass production method. This is notable since the net biomass production method is a new approach to determine C:Fe ratios. Although it has potential issues related to bottle effects and sensitivity to trace contamination, the method avoids some of the questions associated with iron speciation and bioavailability since ambient iron supports production. Because light intensity is known to affect C:Fe ratios in phytoplankton through photosynthetic iron demands, we tested the effect of light level on C:Fe in Antarctic assemblages. In contrast to what is seen in many phytoplankton cultures, C:Fe ratios increased at low-light, but we suspect that this is due to initial photoinhibition of the low-light adapted winter assemblages at higher light levels. (c) 2012 Elsevier Ltd. All rights reserved.

Hopkinson, BM, Barbeau KA.  2007.  Organic and redox speciation of iron in the eastern tropical North Pacific suboxic zone. Marine Chemistry. 106:2-17.   10.1016/j.marchem.2006.02.008   AbstractWebsite

The organic and redox speciation of iron was examined in the strongly layered upper water column of the eastern tropical North Pacific, including oxic and sub oxic waters, in a region 100- 1300 km offshore. Suboxic conditions ([O-2] < 5 mu M) were found to affect the organic speciation of iron, and reduced dissolved iron, Fc(II), was present in the suboxic zone, but conditions were not sufficiently reducing to convert all iron to Fe(II). Dissolved iron concentrations in the suboxic zone were similar to concentrations found in oxic regions. Using a competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV) method, natural ligands were found to have distinct characteristics in the oxic and suboxic waters with stronger ligands found in the suboxic zone. It is unusual to find stronger ligands below the euphotic zone, but their strength, logK(Fe'L) = 12.1-12.8, is within the range determined for surface ligands in other regions. These strong ligands may be the result of the unique chemistry of the suboxic zone stabilizing reduced or labile compounds, or they may be actively produced by microbes to enhance iron uptake. No onshore-offshore trends in ligand strength or concentration were detected suggesting the ligands may result from the inherent chemistry of the suboxic zone or production from denitrifiers, rather than the resident suboxic zone population of Prochlorococcus which were more abundant nearshore. A luminol-chemiluminescence based flow injection analysis (FIA) technique capable of detecting picomolar concentrations of Fe(II) was used to assess the redox state of iron in the suboxic zone and overlying oxic waters at a station 1300 km offshore. An elevated signal equivalent to 0.12-0.15 nM Fe(II), 21-24% of dissolved iron, was found only in the suboxic waters. Oxidation kinetics suggest that this Fe(II) is most likely produced by an in-situ process, as opposed to being transported from shelf sediment. The luminol-chemiluminescence Fe(II) method was systematically tested for inferences from reduced species potentially present in the suboxic zone to validate our Fe(II) results. Several species, V(IV) and V(111), produced significant signals, but considerations of the reducing state of the suboxic zone make it unlikely that reduced V is present. With additional information on the identity of the suboxic zone species provided by analysis of signal decay rate, it was determined that Fe(II) was the most reasonable source of the signal, and at minimum the chemiluminescence data allows us to set limits on the Fe(II) concentration in the offshore suboxic water column. (C) 2006 Elsevier B.V. All rights reserved.

Hopkinson, BM, Mitchell G, Reynolds RA, Wang H, Selph KE, Measures CI, Hewes CD, Holm-Hansen O, Barbeau KA.  2007.  Iron limitation across chlorophyll gradients in the southern Drake Passage: Phytoplankton responses to iron addition and photosynthetic indicators of iron stress. Limnology and Oceanography. 52:2540-2554.   10.4319/lo.2007.52.6.2540   AbstractWebsite

Processes influencing phytoplankton bloom development in the southern Drake Passage were studied using shipboard iron-enrichment incubations conducted across a surface chlorophyll gradient near the Antarctic Peninsula, in a region of water mass mixing. Iron incubation assays showed that Antarctic Circumpolar Current (ACC) waters were severely iron limited, while shelf waters with high ambient iron concentrations (1-2 nmol L-1) were iron replete, demonstrating that mixing of the two water masses is a plausible mechanism for generation of the high phytoplankton biomass observed downstream of the Antarctic Peninsula. In downstream high-chlorophyll mixed waters, phytoplankton growth rates were also iron limited, although responses to iron addition were generally more moderate as compared to ACC waters. Synthesizing results from all experiments, significant correlations were found between the initial measurements of Photosystem II (PSII) parameters (F-v: F-m, sigma(PSII), and p) and the subsequent responses of these waters to iron addition. These correlations indicate that PSII parameters can be used to assess the degree of iron stress experienced in these waters and likely in other regions where photoinhibition and nitrogen stress are not confounding factors.

Hopkinson, BM, Barbeau KA.  2008.  Interactive influences of iron and light limitation on phytoplankton at subsurface chlorophyll maxima in the eastern North Pacific. Limnology and Oceanography. 53:1303-1318.   10.4319/lo.2008.53.4.1303   AbstractWebsite

The roles of iron and light as limiting and colimiting factors for phytoplankton growth in subsurface chlorophyll maxima (SCMs) were investigated in mesotrophic to oligotrophic waters of the Southern California Bight and the eastern tropical North Pacific using microcosm manipulation experiments. Phytoplankton responses indicative of iron-light colimitation were found at several SCMs underlying macronutrient-limited surface waters in the eastern Pacific. Iron additions led to a shift in the size and taxonomic structure of the phytoplankton community, where large diatoms dominated what was formerly a diverse community of relatively small phytoplankton. The strongest and most ubiquitous responses of diatoms to iron addition were found under elevated light conditions, indicating that iron availability may have the greatest potential to affect SCM phytoplankton communities when light levels increase rapidly, such as during eddy events or with strong internal waves. The results show that iron influences phytoplankton community structure at SCMs, which would have consequences for nutrient cycling and carbon export within the lower euphotic zone.

Hopkinson, BM, Barbeau KA.  2012.  Iron transporters in marine prokaryotic genomes and metagenomes. Environmental Microbiology. 14:114-128.   10.1111/j.1462-2920.2011.02539.x   AbstractWebsite

In the pelagic environment, iron is a scarce but essential micronutrient. The iron acquisition capabilities of selected marine bacteria have been investigated, but the recent proliferation of marine prokaryotic genomes and metagenomes offers a more comprehensive picture of microbial iron uptake pathways in the ocean. Searching these data sets, we were able to identify uptake mechanisms for Fe3+, Fe2+ and iron chelates (e.g. siderophore and haem iron complexes). Transport of iron chelates is accomplished by TonB-dependent transporters (TBDTs). After clustering the TBDTs from marine prokaryotic genomes, we identified TBDT clusters for the transport of hydroxamate and catecholate siderophore iron complexes and haem using gene neighbourhood analysis and co-clustering of TBDTs of known function. The genomes also contained two classes of siderophore biosynthesis genes: NRPS (non-ribosomal peptide synthase) genes and NIS (NRPS Independent Siderophore) genes. The most common iron transporters, in both the genomes and metagenomes, were Fe3+ ABC transporters. Iron uptake-related TBDTs and siderophore biosynthesis genes were less common in pelagic marine metagenomes relative to the genomic data set, in part because Pelagibacter ubique and Prochlorococcus species, which almost entirely lacked these Fe uptake systems, dominate the metagenomes. Our results are largely consistent with current knowledge of iron speciation in the ocean, but suggest that in certain niches the ability to acquire siderophores and/or haem iron chelates is beneficial.