Publications

Export 3 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q [R] S T U V W X Y Z   [Show ALL]
R
Barbeau, K, Kujawinski EB, Moffett JW.  2001.  Remineralization and recycling of iron, thorium and organic carbon by heterotrophic marine protists in culture. Aquatic Microbial Ecology. 24:69-81.   10.3354/ame024069   AbstractWebsite

To characterize trace metal cycling in marine systems as mediated by heterotrophic protists, we conducted a series of laboratory experiments in 2-organism model systems consisting of bacteria and protistan grazers. Trace metal isotopes (Fe-59 and Th-234),C-14, and bulk organic carbon measurements were used to follow the chemical transformation of bacterial carbon and associated trace metals by several different grazer species. Results indicate that grazers were able to cause repartitioning of Th and regeneration of Fe from bacterial prey into the dissolved phase (<0.2 m), even in particle-rich laboratory cultures. For both Th and Fe, protist grazing led to the formation of relatively stable dissolved and colloidal metal-organic species. Metal/carbon ratios of the particle pool in some model systems with grazers were significantly altered, indicating a decoupling of trace metal and organic carbon cycling through the grazing process. Different protist species exhibited substantial variation (up to a factor of 10) in their ability to quantitatively remobilize trace metals from bacterial prey. The implications of these findings for trace metal cycling in marine systems are discussed.

Jiang, MS, Barbeau KA, Selph KE, Measures CI, Buck KN, Azam F, Mitchell BG, Zhou M.  2013.  The role of organic ligands in iron cycling and primary productivity in the Antarctic Peninsula: A modeling study. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 90:112-133.   10.1016/j.dsr2.2013.01.029   AbstractWebsite

Iron (Fe) is the limiting nutrient for primary productivity in the Southern Ocean, with much of the dissolved iron (dFe) bound to organic ligands or colloids. A Fe model for the Southern Ocean (SOFe) is developed to understand the role of bacteria and organic ligands in controlling Fe cycling and productivity. The model resolves the classical food web and microbial loop, including three types of nutrients (N, Si, Fe) and two types of Fe ligands. Simulations of the zero-dimensional (0-D) model are calibrated with detailed results of shipboard grow-out incubation experiments conducted with Antarctic Peninsula phytoplankton communities during winter 2006 to provide the best estimate of key biological parameters. Then a one-dimensional (1-D) model is developed by coupling the biological model with the Regional Oceanic Modeling System (ROMS) for a site on the Antarctic Peninsula shelf, and the model parameters are further calibrated with data collected from two surveys (summer 2004 and winter 2006) in the area. The results of the numerical simulations agree reasonably well with observations. An analysis of the 1-D model results suggests that bacteria and organic ligands may play an important role in Fe cycling, which can be categorized into a relatively fast mode within the euphotic zone dominated by photo-reactions (summer d Fe residence time about 600 days) and complexation and a slow mode below with most of the dFe biologically complexed (summer dFe residence time > 10 years). The dFe removal from the euphotic zone is dominated by colloidal formation and further aggregations with additional contribution from biological uptake, and an increase of organic ligands would reduce Fe export. The decrease of Fe removal rate over depth is due to the continuous dissolution and remineralization of particulate Fe. A number of sensitivity experiments are carried out for both O-D and 1-D models to understand the importance of photo-reactive processes in primary productivity, bacterial activity, Fe speciation, and dFe residence time within the euphotic zone. The bio-availability of ligand-bound Fe (FeL) is critical to modeled high primary productivity, which is consistent with both shipboard measurements and field observations. In addition, model productivity is sensitive to photoreaction rates if FeL is not directly available for phytoplankton uptake. (C) 2013 Elsevier Ltd. All rights reserved.

Barbeau, K, Moffett JW, Caron DA, Croot PL, Erdner DL.  1996.  Role of protozoan grazing in relieving iron limitation of phytoplankton. Nature. 380:61-64.   10.1038/380061a0   AbstractWebsite

RECENT evidence indicates that iron is a limiting factor in primary production in some areas of the oceans(1,2). In sea water, iron is largely present in the form of particulate and colloidal phases which are apparently unavailable for uptake by phytoplankton(3-5). Several mechanisms have been proposed whereby non-reactive iron may be converted into more labile forms (for example, thermal dissolution(6), photochemical reactions(7,8) and ligand complexation(9)). Here we report that digestion of colloidal iron in the acidic food vacuoles of protozoan grazers may be a mechanism for the generation of 'bioavailable' iron from refractory iron phases. We have demonstrated several grazer-mediated effects on colloidal ferrihydrite, including a decrease in colloid size, an increase in colloid lability as determined by competitive ligand-exchange techniques, and an increase in the bioavailability of colloids to iron-limited diatoms. These results indicate that protozoan grazers may significantly enhance the supply of iron to marine phytoplankton from terrestrial sources.