Publications

Export 4 results:
Sort by: Author [ Title  (Desc)] Type Year
A B C [D] E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
D
Bundy, RM, Biller DV, Buck KN, Bruland KW, Barbeau KA.  2014.  Distinct pools of dissolved iron-binding ligands in the surface and benthic boundary layer of the California Current. Limnology and Oceanography. 59:769-787.   10.4319/lo.2014.59.3.0769   AbstractWebsite

Organic dissolved iron (dFe)-binding ligands were measured by competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV) at multiple analytical windows (side reaction coefficient of salicylaldoxime, alpha(Fe(SA)2) = 30, 60, and 100) in surface and benthic boundary layer (BBL) samples along the central California coast during spring and summer. The weakest ligands were detected in the BBL at the lowest analytical window with average log K-FeL,Fe'(cond) = 10.2 +/- 0.4 in the summer and 10.8 +/- 0.2 in the spring. Between 3% and 18% of the dFe complexation in the BBL was accounted for by HS, which were measured separately in samples by ACSV and may indicate a source of dFe-binding ligands from San Francisco Bay. The strongest ligands were found in nearshore spring surface waters at the highest analytical window with average log K-FeL,Fe'(cond) = 11.9 +/- 0.3, and the concentrations of these ligands declined rapidly offshore. The ligand pools in the surface and BBL waters were distinct from each other based on principal components analysis, with variances in the BBL ligand pool explained by sample location, and variance in surface waters explained by water mass. The use of multiple analytical window analysis elucidated several distinct iron-binding ligand pools, each with unique distributions in the central California Current system.

King, AL, Barbeau KA.  2011.  Dissolved iron and macronutrient distributions in the southern California Current System. Journal of Geophysical Research-Oceans. 116   10.1029/2010jc006324   AbstractWebsite

The distribution of dissolved iron in the southern California Current System (sCCS) is presented from seven research cruises between 2002 and 2006. Dissolved iron concentrations were generally low in most of the study area (<0.5 nM), although high mixed layer and water column dissolved iron concentrations (up to 8 nM) were found to be associated with coastal upwelling, both along the continental margin and some island platforms. A significant supply of iron was probably not from a deep remineralized source but rather from the continental shelf and bottom boundary layer as identified in previous studies along the central and northern California coast. With distance offshore, dissolved iron decreased more rapidly relative to nitrate in a transition zone 10-250 km offshore during spring and summer, resulting in relatively high ratios of nitrate: dissolved iron. Higher nitrate: dissolved iron ratios could be the result of utilization and scavenging in addition to an overall lower supply of iron relative to nitrate in the offshore transition zones. The low supply of iron leads to phytoplankton iron limitation and a depletion in silicic acid relative to nitrate in the coastal upwelling and transition zones of the sCCS.

Barbeau, KA, Moffett JW.  1998.  Dissolution of Iron Oxides by Phagotrophic Protists:‚ÄČ Using a Novel Method To Quantify Reaction Rates. Environmental Science & Technology. 32:2969-2975.: American Chemical Society   10.1021/es9802549   AbstractWebsite

In previous work, we have reported the dissolution of iron oxides within the acidic food vacuoles of marine protozoan grazers as evidence of a novel mechanism for the conversion of refractory iron solids to more labile forms in oxic surface waters. This paper expands upon those initial studies and presents a new technique to study the reaction of iron oxides in seawater, based on the synthesis of colloidal ferrihydrite containing an inert tracer. Measuring the accumulation of the tracer in the dissolved phase enables the determination of the rate and extent of iron oxide reaction, even for kinetically slow processes and regardless of the fate of iron in the system. The validity of the method as a means of following the reaction of iron oxides in seawater is shown here in a series of co-dissolution studies and in several photochemical kinetics experiments. In laboratory studies of the dissolution of colloidal ferrihydrite by protozoan grazers, the inert tracer method enables an improved estimate of the rate of protozoan-mediated iron oxide dissolution, confirming our previous results and providing a useful tool for further studies of phagotrophy as a reaction pathway for refractory iron.

Hogle, SL, Brahamsha B, Barbeau KA.  2017.  Direct Heme Uptake by Phytoplankton-Associated Roseobacter Bacteria. mSystems. 2(1):e00124-16.   10.1128/mSystems.00124-16   AbstractWebsite

n/a