Publications

Export 4 results:
Sort by: Author Title [ Type  (Desc)] Year
Journal Article
King, AL, Barbeau K.  2007.  Evidence for phytoplankton iron limitation in the southern California Current System. Marine Ecology-Progress Series. 342:91-103.   10.3354/meps342091   AbstractWebsite

Observations of phytoplankton iron limitation in the world's oceans have primarily been confined to high-nutrient, low-chlorophyll (HNLC) regimes, found in the western equatorial and subarctic Pacific, Southern Ocean, and coastal upwelling zones off California and Peru. We investigated the potential for phytoplankton iron limitation in coastal transition zones (50 to 200 km offshore) of the southern California Current System, a weak upwelling regime that is relatively low in nutrients (< 4 mu mol nitrate 1(-1)) and low in chlorophyll (< 1 mu g chl a 1(-1)). In grow-out incubation experiments conducted during summer, July 2003 and 2004, phytoplankton responded to nanomolar iron additions, despite the non-HNLC initial conditions, Observed changes in phytoplankton and nutrient parameters upon iron addition were significant, although markedly lower in amplitude relative to typical grow-out experiments in HNLC regimes. While we cannot disprove alternate explanations for the observed limitation of phytoplankton growth, such as a proximate grazing control, our results indicate that phytoplankton growth in the southern California Current System is, at times, limited by the supply of iron. Based on our findings and the results of previous studies in this region, we suggest that phytoplankton biomass is generally limited by the supply of nitrate, while iron, directly or indirectly, influences macronutrient utilization, community species composition, and phytoplankton spatial and temporal distribution.

Hopkinson, BM, Barbeau KA.  2008.  Interactive influences of iron and light limitation on phytoplankton at subsurface chlorophyll maxima in the eastern North Pacific. Limnology and Oceanography. 53:1303-1318.   10.4319/lo.2008.53.4.1303   AbstractWebsite

The roles of iron and light as limiting and colimiting factors for phytoplankton growth in subsurface chlorophyll maxima (SCMs) were investigated in mesotrophic to oligotrophic waters of the Southern California Bight and the eastern tropical North Pacific using microcosm manipulation experiments. Phytoplankton responses indicative of iron-light colimitation were found at several SCMs underlying macronutrient-limited surface waters in the eastern Pacific. Iron additions led to a shift in the size and taxonomic structure of the phytoplankton community, where large diatoms dominated what was formerly a diverse community of relatively small phytoplankton. The strongest and most ubiquitous responses of diatoms to iron addition were found under elevated light conditions, indicating that iron availability may have the greatest potential to affect SCM phytoplankton communities when light levels increase rapidly, such as during eddy events or with strong internal waves. The results show that iron influences phytoplankton community structure at SCMs, which would have consequences for nutrient cycling and carbon export within the lower euphotic zone.

Landry, MR, Ohman MD, Goericke R, Stukel MR, Barbeau KA, Bundy R, Kahru M.  2012.  Pelagic community responses to a deep-water front in the California Current Ecosystem: overview of the A-Front Study. Journal of Plankton Research. 34:739-748.   10.1093/plankt/fbs025   AbstractWebsite

In October 2008, we investigated pelagic community composition and biomass, from bacteria to fish, across a sharp frontal gradient overlying deep waters south of Point Conception, California. This northsouth gradient, which we called A-Front, was formed by the eastward flow of the California Current and separated cooler mesotrophic waters of coastal upwelling origin to the north, from warm oligotrophic waters of likely mixed subarcticsubtropical origin to the south. Plankton biomass and phytoplankton growth rates were two to three times greater on the northern side, and primary production rates were elevated 5-fold to the north. Compared with either of the adjacent waters, the frontal interface was strongly enriched and uniquely defined by a subsurface bloom of large diatoms, elevated concentrations of suspension-feeding zooplankton, high bioacoustical estimates of pelagic fish and enhanced bacterial production and phytoplankton biomass and photosynthetic potential. Such habitats, though small in areal extent, may contribute disproportionately and importantly to regional productivity, nutrient cycling, carbon fluxes and trophic ecology. As a general introduction to the A-Front study, we provide an overview of its design and implementation, a brief summary of major findings and a discussion of potential mechanisms of plankton enrichment at the front.

Hogle, SL, Dupont CL, Hopkinson BM, King AL, Buck KN, Roe KL, Stuart RK, Allen AE, Mann EL, Johnson ZI, Barbeau KA.  2018.  Pervasive iron limitation at subsurface chlorophyll maxima of the California Current. Proceedings of the National Academy of Sciences of the United States of America. 115:13300-13305.   10.1073/pnas.1813192115   AbstractWebsite

Subsurface chlorophyll maximum layers (SCMLs) are nearly ubiquitous in stratified water columns and exist at horizontal scales ranging from the submesoscale to the extent of oligotrophic gyres. These layers of heightened chlorophyll and/or phytoplankton concentrations are generally thought to be a consequence of a balance between light energy from above and a limiting nutrient flux from below, typically nitrate (NO3). Here we present multiple lines of evidence demonstrating that iron (Fe) limits or with light colimits phytoplankton communities in SCMLs along a primary productivity gradient from coastal to oligotrophic offshore waters in the southern California Current ecosystem. SCML phytoplankton responded markedly to added Fe or Fe/light in experimental incubations and transcripts of diatom and picoeukaryote Fe stress genes were strikingly abundant in SCML metatranscriptomes. Using a biogeochemical proxy with data from a 40-y time series, we find that diatoms growing in California Current SCMLs are persistently Fe deficient during the spring and summer growing season. We also find that the spatial extent of Fe deficiency within California Current SCMLs has significantly increased over the last 25 y in line with a regional climate index. Finally, we show that diatom Fe deficiency may be common in the subsurface of major upwelling zones worldwide. Our results have important implications for our understanding of the biogeochemical consequences of marine SCML formation and maintenance.