Export 6 results:
Sort by: Author Title Type [ Year  (Desc)]
Fitzsimmons, JN, Bundy RM, Al-Subiai SN, Barbeau KA, Boyle EA.  2015.  The composition of dissolved iron in the dusty surface ocean: An exploration using size-fractionated iron-binding ligands. Marine Chemistry. 173:125-135.   10.1016/j.marchem.2014.09.002   AbstractWebsite

The size partitioning of dissolved iron and organic iron-binding ligands into soluble and colloidal phases was investigated in the upper 150 m of two stations along the GA03 U.S. GEOTRACES North Atlantic transect. The size fractionation was completed using cross-flow filtration methods, followed by analysis by isotope dilution inductively-coupled plasma mass spectrometry (ID-ICP-MS) for iron and competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV) for iron-binding ligands. On average, 80% of the 0.1-0.65 nM dissolved iron (<0.2 mu m) was partitioned into the colloidal iron (cFe) size fraction (10 kDa < cFe <0.2 gm), as expected for areas of the ocean underlying a dust plume. The 1.3-2.0 nM strong organic iron-binding ligands, however, overwhelmingly (75-77%) fell into the soluble size fraction (<10 kDa). As a result, modeling the dissolved iron size fractionation at equilibrium using the observed ligand partitioning did not accurately predict the iron partitioning into colloidal and soluble pools. This suggests that either a portion of colloidal ligands is missed by current electrochemical methods because they react with iron more slowly than the equilibration time of our CLE-ACSV method, or part of the observed colloidal iron is actually inorganic in composition and thus cannot be predicted by our model of unbound iron-binding ligands. This potentially contradicts the prevailing view that greater than >99% of dissolved iron in the ocean is organically complexed. Disentangling the chemical form of iron in the upper ocean has important implications for surface ocean biogeochemistry and may affect iron uptake by phytoplankton. (C) 2014 Elsevier B.V. All rights reserved.

Bundy, RM, Biller DV, Buck KN, Bruland KW, Barbeau KA.  2014.  Distinct pools of dissolved iron-binding ligands in the surface and benthic boundary layer of the California Current. Limnology and Oceanography. 59:769-787.   10.4319/lo.2014.59.3.0769   AbstractWebsite

Organic dissolved iron (dFe)-binding ligands were measured by competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV) at multiple analytical windows (side reaction coefficient of salicylaldoxime, alpha(Fe(SA)2) = 30, 60, and 100) in surface and benthic boundary layer (BBL) samples along the central California coast during spring and summer. The weakest ligands were detected in the BBL at the lowest analytical window with average log K-FeL,Fe'(cond) = 10.2 +/- 0.4 in the summer and 10.8 +/- 0.2 in the spring. Between 3% and 18% of the dFe complexation in the BBL was accounted for by HS, which were measured separately in samples by ACSV and may indicate a source of dFe-binding ligands from San Francisco Bay. The strongest ligands were found in nearshore spring surface waters at the highest analytical window with average log K-FeL,Fe'(cond) = 11.9 +/- 0.3, and the concentrations of these ligands declined rapidly offshore. The ligand pools in the surface and BBL waters were distinct from each other based on principal components analysis, with variances in the BBL ligand pool explained by sample location, and variance in surface waters explained by water mass. The use of multiple analytical window analysis elucidated several distinct iron-binding ligand pools, each with unique distributions in the central California Current system.

Roe, KL, Hogle SL, Barbeau KA.  2013.  Utilization of heme as an iron source by marine alphaproteobacteria in the roseobacter clade. Applied and Environmental Microbiology. 79:5753-5762.   10.1128/aem.01562-13   AbstractWebsite

The bioavailability and utilization of porphyrin-bound iron, specifically heme, by marine microorganisms have rarely been examined. This study used Ruegeria sp. strain TrichCH4B as a model organism to study heme acquisition by a member of the Roseobacter clade. Analogs of known heme transporter proteins were found within the Ruegeria sp. TrichCH4B genome. The identified heme uptake and utilization system appears to be functional, as the heme genes were upregulated under iron stress, the bacterium could grow on ferric-porphyrin complexes as the sole iron source, and internalization of(55) Fe from ferric protoporphyrin IX was observed. The potential ability to utilize heme in the Roseobacter clade appears to be common, as half of the isolates in the RoseoBase database were found to have a complete heme uptake system. A degenerate primer set was designed and successfully used to identify the putative heme oxygenase gene (hmus) in the roseobacter heme uptake system from diverse nonenriched marine environments. This study found that members of the Roseobacter clade are capable of utilizing heme as an iron source and that this capability may be present in all types of marine environments. The results of this study add a new perspective to the current picture of iron cycling in marine systems, whereby relatively refractory intracellular pools of heme-bound iron may be taken up quickly and directly reincorporated into living bacteria without previous degradation or the necessity of a siderophore intermediate.

Roe, KL, Barbeau K, Mann EL, Haygood MG.  2012.  Acquisition of iron by Trichodesmium and associated bacteria in culture. Environmental Microbiology. 14:1681-1695.   10.1111/j.1462-2920.2011.02653.x   AbstractWebsite

Trichodesmium colonies contain an abundant microbial consortium that is likely to play a role in nutrient cycling within the colony. This study used laboratory cultures of Trichodesmium and two genome-sequenced strains of bacteria typical of Trichodesmium-associated microbes to develop an understanding of the cycling of iron, a potentially limiting micronutrient, within Trichodesmium colonies. We found that the ferric siderophores desferrioxamine B and aerobactin were not readily bioavailable to Trichodesmium, relative to ferric chloride or citrate-associated iron. In contrast, the representative bacterial strains we studied were able to acquire iron from all of the iron sources, implying that naturally occurring Trichodesmium-associated bacteria may be capable of utilizing a more diverse array of iron sources than Trichodesmium. From the organism-specific uptake data collected in this study, a theoretical Trichodesmium colony was designed to model whole colony iron uptake. The bacteria accounted for most (> 70%) of the iron acquired by the colony, highlighting the importance of determining organism-specific uptake in a complex environment. Our findings suggest that, although they may share the same micro-environment, Trichodesmium and its colony-associated microbial cohort may differ substantially in terms of iron acquisition strategy.

King, AL, Buck KN, Barbeau KA.  2012.  Quasi-Lagrangian drifter studies of iron speciation and cycling off Point Conception, California. Marine Chemistry. 128:1-12.   10.1016/j.marchem.2011.11.001   AbstractWebsite

The distribution and speciation of dissolved Fe (dFe) were measured during four quasi-Lagrangian drogued drifter studies (similar to 4 d duration each) that were conducted in the southern California Current System in May 2006 and April 2007. Three of the four drifter studies were within the coastal upwelling regime and one drifter study was in a warm-core anticyclonic eddy. Incubation bottle experiments were also conducted to determine the degree of phytoplankton Fe limitation and to assess changes in the concentration of Fe-binding ligands. In the coastal upwelling drifter studies, in situ dFe (1.4-1.8 nM) and macronutrients were initially high and declined over time. Fe addition incubation experiments indicated that the phytoplankton community was not Fe limited at the beginning of the coastal upwelling drifter experiments (when mu M nitrate:nM dFe ratios were similar to 7-8). By the end of two of the three drifter studies (when mu M nitrate:nM dFe ratios were similar to 12-19), Fe addition resulted in larger nitrate and silicic acid drawdown, and larger accumulations in chlorophyll a, particulate organic carbon and nitrogen, and diatom and dinoflagellate-specific carotenoid pigments. Fe speciation was measured in situ in three of the four drifter studies with stronger L-1-type ligands found to be present in excess of dFe in all samples. In Fe speciation incubation experiments. L-1-type ligand production was observed in conjunction with phytoplankton growth under Fe-limiting conditions. The results presented here support and add a quasi-Lagrangian perspective to previous observations of dFe and macronutrient cycling over space and time within the California coastal upwelling regime, including Fe limitation within the phytoplankton community in this region and the biological production of Fe-binding ligands concomitant with Fe limitation. (C) 2011 Elsevier B.V. All rights reserved.

Buck, KN, Selph KE, Barbeau KA.  2010.  Iron-binding ligand production and copper speciation in an incubation experiment of Antarctic Peninsula shelf waters from the Bransfield Strait, Southern Ocean. Marine Chemistry. 122:148-159.   10.1016/j.marchem.2010.06.002   AbstractWebsite

The evolution of dissolved iron (Fe) and copper (Cu) speciation was followed through a simulated spring bloom event in a 15-day incubation experiment of natural seawater collected during austral winter from high macronutrient high Fe waters of Bransfield Strait in the Southern Ocean. The incubation experiment included unamended bottles as well as Fe additions using the stable isotope of Fe, Fe-57. as inorganic ((FeCl3)-Fe-57) and organic (Fe-57-aerobactin, Fe-57-desferrioxamine B) amendments. Exposure to summer light conditions resulted in substantial growth for all treatments, mimicking the initiation of a spring bloom. The addition of Fe resulted in a 30% increase in phytoplankton biomass over unamended controls by day 15, indicating that the unamended waters became Fe limited despite initially elevated dissolved Fe concentrations. Dissolved Cu and Cu speciation remained largely unchanged for all treatments of the incubation, with Cu speciation dominated by exceedingly strong Cu-binding ligands (log K-CuL1.Cu2+(Cond) similar to 16) and low resultant Cu2+ concentrations (10(-16.3 +/- 0.3) mol L-1). In only the unamended light bottles, strong Fe-binding ligands were produced over the course of the experiment. The observed production of strong Fe-binding ligands in the control bottles that became Fe-limited supports the important role of biologically produced siderophore-type natural ligands in the marine Fe cycle. (C) 2010 Elsevier B.V. All rights reserved.