Publications

Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
2012
Roe, KL, Barbeau K, Mann EL, Haygood MG.  2012.  Acquisition of iron by Trichodesmium and associated bacteria in culture. Environmental Microbiology. 14:1681-1695.   10.1111/j.1462-2920.2011.02653.x   AbstractWebsite

Trichodesmium colonies contain an abundant microbial consortium that is likely to play a role in nutrient cycling within the colony. This study used laboratory cultures of Trichodesmium and two genome-sequenced strains of bacteria typical of Trichodesmium-associated microbes to develop an understanding of the cycling of iron, a potentially limiting micronutrient, within Trichodesmium colonies. We found that the ferric siderophores desferrioxamine B and aerobactin were not readily bioavailable to Trichodesmium, relative to ferric chloride or citrate-associated iron. In contrast, the representative bacterial strains we studied were able to acquire iron from all of the iron sources, implying that naturally occurring Trichodesmium-associated bacteria may be capable of utilizing a more diverse array of iron sources than Trichodesmium. From the organism-specific uptake data collected in this study, a theoretical Trichodesmium colony was designed to model whole colony iron uptake. The bacteria accounted for most (> 70%) of the iron acquired by the colony, highlighting the importance of determining organism-specific uptake in a complex environment. Our findings suggest that, although they may share the same micro-environment, Trichodesmium and its colony-associated microbial cohort may differ substantially in terms of iron acquisition strategy.

King, AL, Buck KN, Barbeau KA.  2012.  Quasi-Lagrangian drifter studies of iron speciation and cycling off Point Conception, California. Marine Chemistry. 128:1-12.   10.1016/j.marchem.2011.11.001   AbstractWebsite

The distribution and speciation of dissolved Fe (dFe) were measured during four quasi-Lagrangian drogued drifter studies (similar to 4 d duration each) that were conducted in the southern California Current System in May 2006 and April 2007. Three of the four drifter studies were within the coastal upwelling regime and one drifter study was in a warm-core anticyclonic eddy. Incubation bottle experiments were also conducted to determine the degree of phytoplankton Fe limitation and to assess changes in the concentration of Fe-binding ligands. In the coastal upwelling drifter studies, in situ dFe (1.4-1.8 nM) and macronutrients were initially high and declined over time. Fe addition incubation experiments indicated that the phytoplankton community was not Fe limited at the beginning of the coastal upwelling drifter experiments (when mu M nitrate:nM dFe ratios were similar to 7-8). By the end of two of the three drifter studies (when mu M nitrate:nM dFe ratios were similar to 12-19), Fe addition resulted in larger nitrate and silicic acid drawdown, and larger accumulations in chlorophyll a, particulate organic carbon and nitrogen, and diatom and dinoflagellate-specific carotenoid pigments. Fe speciation was measured in situ in three of the four drifter studies with stronger L-1-type ligands found to be present in excess of dFe in all samples. In Fe speciation incubation experiments. L-1-type ligand production was observed in conjunction with phytoplankton growth under Fe-limiting conditions. The results presented here support and add a quasi-Lagrangian perspective to previous observations of dFe and macronutrient cycling over space and time within the California coastal upwelling regime, including Fe limitation within the phytoplankton community in this region and the biological production of Fe-binding ligands concomitant with Fe limitation. (C) 2011 Elsevier B.V. All rights reserved.

2008
Hopkinson, BM, Roe KL, Barbeau KA.  2008.  Heme uptake by Microscilla marina and evidence for heme uptake systems in the genomes of diverse marine bacteria. Applied and Environmental Microbiology. 74:6263-6270.   10.1128/aem.00964-08   AbstractWebsite

The ability to acquire diverse and abundant forms of iron would be expected to confer a survival advantage in the marine environment, where iron is scarce. Marine bacteria are known to use siderophores and inorganic iron, but their ability to use heme, an abundant intracellular iron form, has only been examined preliminarily. Microscilla marina, a cultured relative of a bacterial group frequently found on marine particulates, was used as a model organism to examine heme uptake. Searches of the genome revealed analogs to known heme transport proteins, and reverse transcription-quantitative PCR analysis of these genes showed that they were expressed and upregulated under iron stress and during growth on heme. M. marina was found to take up heme-bound iron and could grow on heme as a sole iron source, supporting the genetic evidence for heme transport. Similar putative heme transport components were identified in the genomes of diverse marine bacteria. These systems were found in the genomes of many bacteria thought to be particle associated but were lacking in known free-living organisms (e.g., Pelagibacter ubique and marine cyanobacteria). This distribution of transporters is consistent with the hydrophobic, light-sensitive nature of heme, suggesting that it is primarily available on phytoplankton or detritus or in nutrient-rich environments.