Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Semeniuk, DM, Taylor RL, Bundy RM, Johnson WK, Cullen JT, Robert M, Barbeau KA, Maldonado MT.  2016.  Iron-copper interactions in iron-limited phytoplankton in the northeast subarctic Pacific Ocean. Limnology and Oceanography. 61:279-297.   10.1002/lno.10210   AbstractWebsite

In August 2010, iron (Fe) and Fe and copper (Cu) addition incubation experiments were conducted at two low Fe stations (P20 and P26) along Line P, off the western coast of British Columbia, to investigate Cu physiology in Fe- and Fe-light co-limited phytoplankton. Chlorophyll a concentrations ([Chl a]), maximum variable fluorescence yield (F-v/F-m), and Fe uptake rates by the Cu-dependent high-affinity Fe transport system (HAFeTS) were measured. Additions of Fe resulted in an increase in [Chl a] and F-v/F-m at both stations compared with the controls, regardless of light availability, and confirmed that the phytoplankton communities were Fe-limited. Uptake of Fe by the HAFeTS in both incubations increased with the addition of Fe, and likely reflects luxury Fe uptake and storage. While the in situ inorganic Cu concentrations were similar to those that can induce Cu-limitation in laboratory cultures, increasing Cu availability had no effect on biomass accumulation during both incubations, regardless of Fe availability or light regime. At P26, additions of 1 nmol L-1 CuSO4 resulted in a short-term increase in F-v/F-m of the phytoplankton community, and an increase in Fe uptake rates by large phytoplankton (>5 mu m), but only when light was not limiting. These data confirm a complex interaction between light, Fe and Cu physiology in indigenous phytoplankton communities, and suggest that these interactions may be both spatially heterogeneous and different for different phytoplankton size classes.

Hopkinson, BM, Barbeau KA.  2007.  Organic and redox speciation of iron in the eastern tropical North Pacific suboxic zone. Marine Chemistry. 106:2-17.   10.1016/j.marchem.2006.02.008   AbstractWebsite

The organic and redox speciation of iron was examined in the strongly layered upper water column of the eastern tropical North Pacific, including oxic and sub oxic waters, in a region 100- 1300 km offshore. Suboxic conditions ([O-2] < 5 mu M) were found to affect the organic speciation of iron, and reduced dissolved iron, Fc(II), was present in the suboxic zone, but conditions were not sufficiently reducing to convert all iron to Fe(II). Dissolved iron concentrations in the suboxic zone were similar to concentrations found in oxic regions. Using a competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV) method, natural ligands were found to have distinct characteristics in the oxic and suboxic waters with stronger ligands found in the suboxic zone. It is unusual to find stronger ligands below the euphotic zone, but their strength, logK(Fe'L) = 12.1-12.8, is within the range determined for surface ligands in other regions. These strong ligands may be the result of the unique chemistry of the suboxic zone stabilizing reduced or labile compounds, or they may be actively produced by microbes to enhance iron uptake. No onshore-offshore trends in ligand strength or concentration were detected suggesting the ligands may result from the inherent chemistry of the suboxic zone or production from denitrifiers, rather than the resident suboxic zone population of Prochlorococcus which were more abundant nearshore. A luminol-chemiluminescence based flow injection analysis (FIA) technique capable of detecting picomolar concentrations of Fe(II) was used to assess the redox state of iron in the suboxic zone and overlying oxic waters at a station 1300 km offshore. An elevated signal equivalent to 0.12-0.15 nM Fe(II), 21-24% of dissolved iron, was found only in the suboxic waters. Oxidation kinetics suggest that this Fe(II) is most likely produced by an in-situ process, as opposed to being transported from shelf sediment. The luminol-chemiluminescence Fe(II) method was systematically tested for inferences from reduced species potentially present in the suboxic zone to validate our Fe(II) results. Several species, V(IV) and V(111), produced significant signals, but considerations of the reducing state of the suboxic zone make it unlikely that reduced V is present. With additional information on the identity of the suboxic zone species provided by analysis of signal decay rate, it was determined that Fe(II) was the most reasonable source of the signal, and at minimum the chemiluminescence data allows us to set limits on the Fe(II) concentration in the offshore suboxic water column. (C) 2006 Elsevier B.V. All rights reserved.