Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Barbeau, K, Rue EL, Trick CG, Bruland KT, Butler A.  2003.  Photochemical reactivity of siderophores produced by marine heterotrophic bacteria and cyanobacteria based on characteristic Fe(III) binding groups. Limnology and Oceanography. 48:1069-1078. AbstractWebsite

Siderophores, high-affinity Fe(III) ligands produced by microorganisms to facilitate iron acquisition, might contribute significantly to dissolved Fe(III) complexation in ocean surface waters. In previous work, we demonstrated the photoreactivity of the ferric ion complexes of several alpha-hydroxy carboxylic acid-containing siderophores produced by heterotrophic marine bacteria. Here, we expand on our earlier studies and detail the photoreactivity of additional siderophores produced by both heterotrophic marine bacteria and marine cyanobacteria, making comparisons to synthetic and terrestrial siderophores that lack the alpha-hydroxy carboxylate group. Our results suggest that, in addition to secondary photochemical reaction pathways involving reactive oxygen species, direct photolysis of Fe(III)-siderophore complexes might be a significant source of Fe(II) and reactive Fe(III) in ocean surface waters. Our findings further indicate that the photoreactivity of siderophores is primarily determined by the chemical structure of the Fe(III) binding groups that they possess-hydroxamate, catecholate, or alpha-hydroxy carboxylate moieties. Hydroxamate groups are photochemically resistant regardless of Fe(III) complexation. Catecholates, in contrast, are susceptible to photooxidation in the uncomplexed form but stabilized against photooxidation when ferrated. alpha-Hydroxy carboxylate groups are stable as the uncomplexed acid, but when coordinated to Fe(III), these moieties undergo light-induced ligand oxidation and reduction of Fe(III) to Fe(II). These photochemical properties appear to determine the reactivity and fate of Fe(III)-binding siderophores in ocean surface waters, which in turn might significantly influence the biogeochemical cycling of iron.

Barbeau, K, Moffett JW.  2000.  Laboratory and field studies of colloidal iron oxide dissolution as mediated by phagotrophy and photolysis. Limnology and Oceanography. 45:827-835. AbstractWebsite

In a previous work, we have employed colloidal ferrihydrite impregnated with an inert radiotracer to probe the mechanistics of iron redox cycling in seawater via phagotrophic and photochemical processes. This paper reports further studies using the inert tracer technique, directed towards obtaining a more quantitative sense of the importance of phagotrophy relative to photolysis as a pathway for the production of bioavailable iron in oxygenated seawater. Our results indicate a maximal (i.e., near-surface at noon) rate of 12% per day for the photochemically-mediated dissolution of colloidal ferrihydrite. Protozoan-mediated dissolution of the same iron oxide phase proceeds at a rate ranging from 1-6% per day, depending on grazing turnover rates. Thus, while photolysis should dominate the redox cycling of refractory iron solids in near-surface waters under bright daytime conditions, phagotrophy is likely to be a more important process overall when the entire euphotic zone is considered on a time-averaged basis.