Publications

Export 11 results:
Sort by: Author Title Type [ Year  (Desc)]
2015
Bundy, RM, Abdulla HAN, Hatcher PG, Biller DV, Buck KN, Barbeau KA.  2015.  Iron-binding ligands and humic substances in the San Francisco Bay estuary and estuarine-influenced shelf regions of coastal California. Marine Chemistry. 173:183-194.   10.1016/j.marchem.2014.11.005   AbstractWebsite

Dissolved iron (dFe) and organic dFe-binding ligands were determined in San Francisco Bay, California by competitive ligand exchange adsorptive cathodic stripping voltammetry (CLE-ACSV) along a salinity gradient from the freshwater endmember of the Sacramento River (salinity <2) to the mouth of the estuary (salinity >26). A range of dFe-binding ligand classes was simultaneously determined using multiple analytical window analysis, involving titrations with multiple concentrations of the added ligand,salicylaldoxime. The highest dFe and ligand concentrations were determined in the low salinity end of the estuary, with dFe equal to 131.5 nmol L-1 and strong ligand (log K-Fel, Fe'(cond) >= 12.0) concentrations equal to 139.5 nmol L-1. The weakest ligands (log K-Fel, Fe'(cond) < 10.0) were always in excess of dFe in low salinity waters, but were rapidly flocculated within the estuary and were not detected at salinities greater than 7. The strongest ligands (log K-Fel, Fe'(cond) > 11.0) were tightly coupled to dFe throughout the estuary, with average excess ligand concentrations ([L]-[dFe]) equal to 0.5 nmol L-1. Humic-like substances analyzed via both CLE-ACSV and proton nuclear magnetic resonance in several samples were found to be a significant portion of the dFe-binding ligand pool in San Francisco Bay, with concentrations ranging from 559.5 mu g L-1 to 67.5 mu g L-1 in the lowest and highest salinity samples, respectively. DFe-binding ligands and humic-like substances were also found in benthic boundary layer samples taken from the shelf near the mouths of San Francisco Bay and Eel River, suggesting estuaries are an important source of dFe-binding ligands to California coastal shelf waters. (C) 2014 Elsevier B.V. All rights reserved.

2013
Ohman, MD, Barbeau K, Franks PJS, Goericke R, Landry MR, Miller AJ.  2013.  Ecological transitions in a coastal upwelling ecosystem. Oceanography. 26:210-219. AbstractWebsite

The southern California Current Ecosystem (CCE) is a dynamic eastern boundary current ecosystem that is forced by ocean-atmosphere variability on interannual, multidecadal, and long-term secular time scales. Recent evidence suggests that apparent abrupt transitions in ecosystem conditions reflect linear tracking of the physical environment rather than oscillations between alternative preferred states. A space-for-time exchange is one approach that permits use of natural spatial variability in the CCE to develop a mechanistic understanding needed to project future temporal changes. The role of (sub)mesoscale frontal systems in altering rates of nutrient transport, primary and secondary production, export fluxes, and the rates of encounters between predators and prey is an issue central to this pelagic ecosystem and its future trajectory because the occurrence of such frontal features is increasing.

Roe, KL, Hogle SL, Barbeau KA.  2013.  Utilization of heme as an iron source by marine alphaproteobacteria in the roseobacter clade. Applied and Environmental Microbiology. 79:5753-5762.   10.1128/aem.01562-13   AbstractWebsite

The bioavailability and utilization of porphyrin-bound iron, specifically heme, by marine microorganisms have rarely been examined. This study used Ruegeria sp. strain TrichCH4B as a model organism to study heme acquisition by a member of the Roseobacter clade. Analogs of known heme transporter proteins were found within the Ruegeria sp. TrichCH4B genome. The identified heme uptake and utilization system appears to be functional, as the heme genes were upregulated under iron stress, the bacterium could grow on ferric-porphyrin complexes as the sole iron source, and internalization of(55) Fe from ferric protoporphyrin IX was observed. The potential ability to utilize heme in the Roseobacter clade appears to be common, as half of the isolates in the RoseoBase database were found to have a complete heme uptake system. A degenerate primer set was designed and successfully used to identify the putative heme oxygenase gene (hmus) in the roseobacter heme uptake system from diverse nonenriched marine environments. This study found that members of the Roseobacter clade are capable of utilizing heme as an iron source and that this capability may be present in all types of marine environments. The results of this study add a new perspective to the current picture of iron cycling in marine systems, whereby relatively refractory intracellular pools of heme-bound iron may be taken up quickly and directly reincorporated into living bacteria without previous degradation or the necessity of a siderophore intermediate.

Hopkinson, BM, Seegers B, Hatta M, Measures CI, Mitchell BG, Barbeau KA.  2013.  Planktonic C:Fe ratios and carrying capacity in the southern Drake Passage. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 90:102-111.   10.1016/j.dsr2.2012.09.001   AbstractWebsite

The carbon to iron (C:Fe) ratio of planktonic biomass constrains net production in iron-limited regions of the ocean and is an important parameter for predicting biomass production from iron inputs. On a cruise to the southern Drake Passage in July-August 2006, we used two approaches to determine the C:Fe ratio of planktonic material: dual-radiotracer labeling and net biomass production in iron-limited grow-out experiments. There was variability in C:Fe ratios among experiments, but values from the two methods overlapped with average values of 1.4 x 10(5) (mol:mol) for the radiotracer method and 1.7 x 10(5) for the net biomass production method. This is notable since the net biomass production method is a new approach to determine C:Fe ratios. Although it has potential issues related to bottle effects and sensitivity to trace contamination, the method avoids some of the questions associated with iron speciation and bioavailability since ambient iron supports production. Because light intensity is known to affect C:Fe ratios in phytoplankton through photosynthetic iron demands, we tested the effect of light level on C:Fe in Antarctic assemblages. In contrast to what is seen in many phytoplankton cultures, C:Fe ratios increased at low-light, but we suspect that this is due to initial photoinhibition of the low-light adapted winter assemblages at higher light levels. (c) 2012 Elsevier Ltd. All rights reserved.

Jiang, MS, Barbeau KA, Selph KE, Measures CI, Buck KN, Azam F, Mitchell BG, Zhou M.  2013.  The role of organic ligands in iron cycling and primary productivity in the Antarctic Peninsula: A modeling study. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 90:112-133.   10.1016/j.dsr2.2013.01.029   AbstractWebsite

Iron (Fe) is the limiting nutrient for primary productivity in the Southern Ocean, with much of the dissolved iron (dFe) bound to organic ligands or colloids. A Fe model for the Southern Ocean (SOFe) is developed to understand the role of bacteria and organic ligands in controlling Fe cycling and productivity. The model resolves the classical food web and microbial loop, including three types of nutrients (N, Si, Fe) and two types of Fe ligands. Simulations of the zero-dimensional (0-D) model are calibrated with detailed results of shipboard grow-out incubation experiments conducted with Antarctic Peninsula phytoplankton communities during winter 2006 to provide the best estimate of key biological parameters. Then a one-dimensional (1-D) model is developed by coupling the biological model with the Regional Oceanic Modeling System (ROMS) for a site on the Antarctic Peninsula shelf, and the model parameters are further calibrated with data collected from two surveys (summer 2004 and winter 2006) in the area. The results of the numerical simulations agree reasonably well with observations. An analysis of the 1-D model results suggests that bacteria and organic ligands may play an important role in Fe cycling, which can be categorized into a relatively fast mode within the euphotic zone dominated by photo-reactions (summer d Fe residence time about 600 days) and complexation and a slow mode below with most of the dFe biologically complexed (summer dFe residence time > 10 years). The dFe removal from the euphotic zone is dominated by colloidal formation and further aggregations with additional contribution from biological uptake, and an increase of organic ligands would reduce Fe export. The decrease of Fe removal rate over depth is due to the continuous dissolution and remineralization of particulate Fe. A number of sensitivity experiments are carried out for both O-D and 1-D models to understand the importance of photo-reactive processes in primary productivity, bacterial activity, Fe speciation, and dFe residence time within the euphotic zone. The bio-availability of ligand-bound Fe (FeL) is critical to modeled high primary productivity, which is consistent with both shipboard measurements and field observations. In addition, model productivity is sensitive to photoreaction rates if FeL is not directly available for phytoplankton uptake. (C) 2013 Elsevier Ltd. All rights reserved.

2012
Hopkinson, BM, Barbeau KA.  2012.  Iron transporters in marine prokaryotic genomes and metagenomes. Environmental Microbiology. 14:114-128.   10.1111/j.1462-2920.2011.02539.x   AbstractWebsite

In the pelagic environment, iron is a scarce but essential micronutrient. The iron acquisition capabilities of selected marine bacteria have been investigated, but the recent proliferation of marine prokaryotic genomes and metagenomes offers a more comprehensive picture of microbial iron uptake pathways in the ocean. Searching these data sets, we were able to identify uptake mechanisms for Fe3+, Fe2+ and iron chelates (e.g. siderophore and haem iron complexes). Transport of iron chelates is accomplished by TonB-dependent transporters (TBDTs). After clustering the TBDTs from marine prokaryotic genomes, we identified TBDT clusters for the transport of hydroxamate and catecholate siderophore iron complexes and haem using gene neighbourhood analysis and co-clustering of TBDTs of known function. The genomes also contained two classes of siderophore biosynthesis genes: NRPS (non-ribosomal peptide synthase) genes and NIS (NRPS Independent Siderophore) genes. The most common iron transporters, in both the genomes and metagenomes, were Fe3+ ABC transporters. Iron uptake-related TBDTs and siderophore biosynthesis genes were less common in pelagic marine metagenomes relative to the genomic data set, in part because Pelagibacter ubique and Prochlorococcus species, which almost entirely lacked these Fe uptake systems, dominate the metagenomes. Our results are largely consistent with current knowledge of iron speciation in the ocean, but suggest that in certain niches the ability to acquire siderophores and/or haem iron chelates is beneficial.

2011
King, AL, Barbeau KA.  2011.  Dissolved iron and macronutrient distributions in the southern California Current System. Journal of Geophysical Research-Oceans. 116   10.1029/2010jc006324   AbstractWebsite

The distribution of dissolved iron in the southern California Current System (sCCS) is presented from seven research cruises between 2002 and 2006. Dissolved iron concentrations were generally low in most of the study area (<0.5 nM), although high mixed layer and water column dissolved iron concentrations (up to 8 nM) were found to be associated with coastal upwelling, both along the continental margin and some island platforms. A significant supply of iron was probably not from a deep remineralized source but rather from the continental shelf and bottom boundary layer as identified in previous studies along the central and northern California coast. With distance offshore, dissolved iron decreased more rapidly relative to nitrate in a transition zone 10-250 km offshore during spring and summer, resulting in relatively high ratios of nitrate: dissolved iron. Higher nitrate: dissolved iron ratios could be the result of utilization and scavenging in addition to an overall lower supply of iron relative to nitrate in the offshore transition zones. The low supply of iron leads to phytoplankton iron limitation and a depletion in silicic acid relative to nitrate in the coastal upwelling and transition zones of the sCCS.

2008
Hopkinson, BM, Roe KL, Barbeau KA.  2008.  Heme uptake by Microscilla marina and evidence for heme uptake systems in the genomes of diverse marine bacteria. Applied and Environmental Microbiology. 74:6263-6270.   10.1128/aem.00964-08   AbstractWebsite

The ability to acquire diverse and abundant forms of iron would be expected to confer a survival advantage in the marine environment, where iron is scarce. Marine bacteria are known to use siderophores and inorganic iron, but their ability to use heme, an abundant intracellular iron form, has only been examined preliminarily. Microscilla marina, a cultured relative of a bacterial group frequently found on marine particulates, was used as a model organism to examine heme uptake. Searches of the genome revealed analogs to known heme transport proteins, and reverse transcription-quantitative PCR analysis of these genes showed that they were expressed and upregulated under iron stress and during growth on heme. M. marina was found to take up heme-bound iron and could grow on heme as a sole iron source, supporting the genetic evidence for heme transport. Similar putative heme transport components were identified in the genomes of diverse marine bacteria. These systems were found in the genomes of many bacteria thought to be particle associated but were lacking in known free-living organisms (e.g., Pelagibacter ubique and marine cyanobacteria). This distribution of transporters is consistent with the hydrophobic, light-sensitive nature of heme, suggesting that it is primarily available on phytoplankton or detritus or in nutrient-rich environments.

2007
Hopkinson, BM, Mitchell G, Reynolds RA, Wang H, Selph KE, Measures CI, Hewes CD, Holm-Hansen O, Barbeau KA.  2007.  Iron limitation across chlorophyll gradients in the southern Drake Passage: Phytoplankton responses to iron addition and photosynthetic indicators of iron stress. Limnology and Oceanography. 52:2540-2554.   10.4319/lo.2007.52.6.2540   AbstractWebsite

Processes influencing phytoplankton bloom development in the southern Drake Passage were studied using shipboard iron-enrichment incubations conducted across a surface chlorophyll gradient near the Antarctic Peninsula, in a region of water mass mixing. Iron incubation assays showed that Antarctic Circumpolar Current (ACC) waters were severely iron limited, while shelf waters with high ambient iron concentrations (1-2 nmol L-1) were iron replete, demonstrating that mixing of the two water masses is a plausible mechanism for generation of the high phytoplankton biomass observed downstream of the Antarctic Peninsula. In downstream high-chlorophyll mixed waters, phytoplankton growth rates were also iron limited, although responses to iron addition were generally more moderate as compared to ACC waters. Synthesizing results from all experiments, significant correlations were found between the initial measurements of Photosystem II (PSII) parameters (F-v: F-m, sigma(PSII), and p) and the subsequent responses of these waters to iron addition. These correlations indicate that PSII parameters can be used to assess the degree of iron stress experienced in these waters and likely in other regions where photoinhibition and nitrogen stress are not confounding factors.

King, AL, Barbeau K.  2007.  Evidence for phytoplankton iron limitation in the southern California Current System. Marine Ecology-Progress Series. 342:91-103.   10.3354/meps342091   AbstractWebsite

Observations of phytoplankton iron limitation in the world's oceans have primarily been confined to high-nutrient, low-chlorophyll (HNLC) regimes, found in the western equatorial and subarctic Pacific, Southern Ocean, and coastal upwelling zones off California and Peru. We investigated the potential for phytoplankton iron limitation in coastal transition zones (50 to 200 km offshore) of the southern California Current System, a weak upwelling regime that is relatively low in nutrients (< 4 mu mol nitrate 1(-1)) and low in chlorophyll (< 1 mu g chl a 1(-1)). In grow-out incubation experiments conducted during summer, July 2003 and 2004, phytoplankton responded to nanomolar iron additions, despite the non-HNLC initial conditions, Observed changes in phytoplankton and nutrient parameters upon iron addition were significant, although markedly lower in amplitude relative to typical grow-out experiments in HNLC regimes. While we cannot disprove alternate explanations for the observed limitation of phytoplankton growth, such as a proximate grazing control, our results indicate that phytoplankton growth in the southern California Current System is, at times, limited by the supply of iron. Based on our findings and the results of previous studies in this region, we suggest that phytoplankton biomass is generally limited by the supply of nitrate, while iron, directly or indirectly, influences macronutrient utilization, community species composition, and phytoplankton spatial and temporal distribution.

2001
Barbeau, K, Kujawinski EB, Moffett JW.  2001.  Remineralization and recycling of iron, thorium and organic carbon by heterotrophic marine protists in culture. Aquatic Microbial Ecology. 24:69-81.   10.3354/ame024069   AbstractWebsite

To characterize trace metal cycling in marine systems as mediated by heterotrophic protists, we conducted a series of laboratory experiments in 2-organism model systems consisting of bacteria and protistan grazers. Trace metal isotopes (Fe-59 and Th-234),C-14, and bulk organic carbon measurements were used to follow the chemical transformation of bacterial carbon and associated trace metals by several different grazer species. Results indicate that grazers were able to cause repartitioning of Th and regeneration of Fe from bacterial prey into the dissolved phase (<0.2 m), even in particle-rich laboratory cultures. For both Th and Fe, protist grazing led to the formation of relatively stable dissolved and colloidal metal-organic species. Metal/carbon ratios of the particle pool in some model systems with grazers were significantly altered, indicating a decoupling of trace metal and organic carbon cycling through the grazing process. Different protist species exhibited substantial variation (up to a factor of 10) in their ability to quantitatively remobilize trace metals from bacterial prey. The implications of these findings for trace metal cycling in marine systems are discussed.