Publications

Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
2014
Hogle, SL, Barbeau KA, Gledhill M.  2014.  Heme in the marine environment: from cells to the iron cycle. Metallomics. 6:1107-1120.   10.1039/c4mt00031e   AbstractWebsite

Hemes are iron containing heterocyclic molecules important in many cellular processes. In the marine environment, hemes participate as enzymatic cofactors in biogeochemically significant processes like photosynthesis, respiration, and nitrate assimilation. Further, hemoproteins, hemes, and their analogs appear to be iron sources for some marine bacterioplankton under certain conditions. Current oceanographic analytical methodologies allow for the extraction and measurement of heme b from marine material, and a handful of studies have begun to examine the distribution of heme b in ocean basins. The study of heme in the marine environment is still in its infancy, but some trends can be gleaned from the work that has been published so far. In this review, we summarize what is known or might be inferred about the roles of heme in marine microbes as well as the few studies on heme in the marine environment that have been conducted to date. We conclude by presenting some future questions and challenges for the field.

2013
Jiang, MS, Barbeau KA, Selph KE, Measures CI, Buck KN, Azam F, Mitchell BG, Zhou M.  2013.  The role of organic ligands in iron cycling and primary productivity in the Antarctic Peninsula: A modeling study. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 90:112-133.   10.1016/j.dsr2.2013.01.029   AbstractWebsite

Iron (Fe) is the limiting nutrient for primary productivity in the Southern Ocean, with much of the dissolved iron (dFe) bound to organic ligands or colloids. A Fe model for the Southern Ocean (SOFe) is developed to understand the role of bacteria and organic ligands in controlling Fe cycling and productivity. The model resolves the classical food web and microbial loop, including three types of nutrients (N, Si, Fe) and two types of Fe ligands. Simulations of the zero-dimensional (0-D) model are calibrated with detailed results of shipboard grow-out incubation experiments conducted with Antarctic Peninsula phytoplankton communities during winter 2006 to provide the best estimate of key biological parameters. Then a one-dimensional (1-D) model is developed by coupling the biological model with the Regional Oceanic Modeling System (ROMS) for a site on the Antarctic Peninsula shelf, and the model parameters are further calibrated with data collected from two surveys (summer 2004 and winter 2006) in the area. The results of the numerical simulations agree reasonably well with observations. An analysis of the 1-D model results suggests that bacteria and organic ligands may play an important role in Fe cycling, which can be categorized into a relatively fast mode within the euphotic zone dominated by photo-reactions (summer d Fe residence time about 600 days) and complexation and a slow mode below with most of the dFe biologically complexed (summer dFe residence time > 10 years). The dFe removal from the euphotic zone is dominated by colloidal formation and further aggregations with additional contribution from biological uptake, and an increase of organic ligands would reduce Fe export. The decrease of Fe removal rate over depth is due to the continuous dissolution and remineralization of particulate Fe. A number of sensitivity experiments are carried out for both O-D and 1-D models to understand the importance of photo-reactive processes in primary productivity, bacterial activity, Fe speciation, and dFe residence time within the euphotic zone. The bio-availability of ligand-bound Fe (FeL) is critical to modeled high primary productivity, which is consistent with both shipboard measurements and field observations. In addition, model productivity is sensitive to photoreaction rates if FeL is not directly available for phytoplankton uptake. (C) 2013 Elsevier Ltd. All rights reserved.

2000
Barbeau, K, Moffett JW.  2000.  Laboratory and field studies of colloidal iron oxide dissolution as mediated by phagotrophy and photolysis. Limnology and Oceanography. 45:827-835. AbstractWebsite

In a previous work, we have employed colloidal ferrihydrite impregnated with an inert radiotracer to probe the mechanistics of iron redox cycling in seawater via phagotrophic and photochemical processes. This paper reports further studies using the inert tracer technique, directed towards obtaining a more quantitative sense of the importance of phagotrophy relative to photolysis as a pathway for the production of bioavailable iron in oxygenated seawater. Our results indicate a maximal (i.e., near-surface at noon) rate of 12% per day for the photochemically-mediated dissolution of colloidal ferrihydrite. Protozoan-mediated dissolution of the same iron oxide phase proceeds at a rate ranging from 1-6% per day, depending on grazing turnover rates. Thus, while photolysis should dominate the redox cycling of refractory iron solids in near-surface waters under bright daytime conditions, phagotrophy is likely to be a more important process overall when the entire euphotic zone is considered on a time-averaged basis.

1994
Barbeau, K, Wollast R.  1994.  Microautoradiography (with Combined Liquid Scintillation) Applied to the Study of Trace-Metal Uptake by Suspended Particles - Initial Results Using NI-63 as a Tracer. Limnology and Oceanography. 39:1211-1222. AbstractWebsite

We report the development of a microautoradiographic method for the study of trace metal-particle interactions in natural waters. This technique, in combination with conventional liquid scintillation counting methods, was applied to surface water samples from the Belgian coastal zone and Scheldt estuary. Ni-63 was used as the metallic radio-tracer. Ni partitioning in our experimental system was shown to be a primarily abiotic process, driven by passive sorption reactions and limited in extent on a 24-h time scale by the slow reaction kinetics of Ni. Small particles (< 1 mum) were important as sorption sites, while large particles exhibited variable and particle-specific scavenging potential.