Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
Chappell, PD, Armbrust EV, Barbeau KA, Bundy RM, Moffett JW, Vedamati J, Jenkins BD.  2019.  Patterns of diatom diversity correlate with dissolved trace metal concentrations and longitudinal position in the northeast Pacific coastal-offshore transition zone. Marine Ecology Progress Series. 609:69-86.   10.3354/meps12810   AbstractWebsite

Diatoms are important primary producers in the northeast Pacific Ocean, with their productivity closely linked to pulses of trace elements in the western high nitrate, low chlorophyll (HNLC) region of the oceanographic time series transect 'Line P.' Recently, the coastal-HNLC transition zone of the Line P transect was identified as a hotspot of phytoplankton productivity, potentially controlled by a combination of trace element and macronutrient concentrations. Here we describe diatom community composition in the eastern Line P transect, including the coastal- HNLC transition zone, with a method using high-throughput sequencing of diatom 18S gene amplicons. We identified significant correlations between shifting diatom community composition and longitude combined with concentrations of dissolved copper and 2 other dissolved trace metals (dissolved Fe [dFe] and/or dissolved zinc) and/or a physical factor (salinity or density). None of these variables on its own was significantly correlated with shifts in community composition, and 3 of the factors (dFe, salinity, and density) correlated with one another. Longitude could incorporate multiple factors that may influence diatom communities, including distance from shore, proximity of sampling stations, and an integration of previous pulses of macro- and micro-nutrients. We also evaluated in situ Fe limitation of the diatom Thalassiosira oceanica using a quantitative reverse-transcription polymerase chain reaction method, and found biological evidence of Fe stress in samples from the coastal-HNLC transition zone. Combined, our results support a prior hypothesis that dissolved trace metals as well as longitudinal distance may be important to diatom diversity in the coastal-HNLC transition zone of the Line P transect.

Semeniuk, DM, Bundy RM, Payne CD, Barbeau KA, Maldonado MT.  2015.  Acquisition of organically complexed copper by marine phytoplankton and bacteria in the northeast subarctic Pacific Ocean. Marine Chemistry. 173:222-233.   10.1016/j.marchem.2015.01.005   AbstractWebsite

Copper (Cu) is an essential micronutrient for marine phytoplankton, but can cause toxicity at elevated intracellular concentrations. The majority of Cu (>99.9%) in oceanic surface waters is bound to strong organic ligands, presumably produced by prokaryotes to detoxify Cu. Although laboratory studies have demonstrated that organically complexed Cu may be bioavailable to marine eukaryotic phytoplankton, the bioavailability of Cu organic complexes to indigenous marine phytoplankton has not been examined in detail. Using the carrier free radioisotope Cu-67 at an iron limited station in the northeast subarctic Pacific Ocean, we performed size fractionated short-term Cu uptake assays with three Cu(II)-chelates, and Cu-67 bound to the strong in situ ligands, with or without additions of weak Cu(I) ligands. Estimates of the maximum supply of inorganic Cu (Cu') to the cell surface of eukaryotic phytoplankton were unable to account for the observed Cu uptake rates from the in situ ligands and two of the three added Cu(II)-chelates. Addition of 10 nM weak organic Cu(I) ligands enhanced uptake of Cu bound to the in situ ligands. Thus, Cu within the in situ and strong artificial Cu(II) organic ligands was accessible to the phytoplankton community via various possible Cu uptake strategies, including; cell surface enzymatically mediated reduction of Cu(II) to Cu(I), the substrate of the high-affinity Cu transport system in eukaryotes; or ligand exchange between weak Cu-binding ligands and the cellular Cu transporters. During a 14-hour uptake assay, particulate Cu concentrations reached a plateau in most treatments. Losses were observed in some treatments, especially in the small size fractions (<5 mu m), corresponding with faster initial Cu uptake rates. This may indicate that Cu cycling is rapid between particulate and dissolved phases due to cellular efflux or remineralization by micrograzers. The acquisition of Cu from the strong in situ ligands puts into question the historic role attributed to Cu binding ligands in decreasing Cu bioavailability. (C) 2015 Elsevier B.V. All rights reserved.

King, AL, Buck KN, Barbeau KA.  2012.  Quasi-Lagrangian drifter studies of iron speciation and cycling off Point Conception, California. Marine Chemistry. 128:1-12.   10.1016/j.marchem.2011.11.001   AbstractWebsite

The distribution and speciation of dissolved Fe (dFe) were measured during four quasi-Lagrangian drogued drifter studies (similar to 4 d duration each) that were conducted in the southern California Current System in May 2006 and April 2007. Three of the four drifter studies were within the coastal upwelling regime and one drifter study was in a warm-core anticyclonic eddy. Incubation bottle experiments were also conducted to determine the degree of phytoplankton Fe limitation and to assess changes in the concentration of Fe-binding ligands. In the coastal upwelling drifter studies, in situ dFe (1.4-1.8 nM) and macronutrients were initially high and declined over time. Fe addition incubation experiments indicated that the phytoplankton community was not Fe limited at the beginning of the coastal upwelling drifter experiments (when mu M nitrate:nM dFe ratios were similar to 7-8). By the end of two of the three drifter studies (when mu M nitrate:nM dFe ratios were similar to 12-19), Fe addition resulted in larger nitrate and silicic acid drawdown, and larger accumulations in chlorophyll a, particulate organic carbon and nitrogen, and diatom and dinoflagellate-specific carotenoid pigments. Fe speciation was measured in situ in three of the four drifter studies with stronger L-1-type ligands found to be present in excess of dFe in all samples. In Fe speciation incubation experiments. L-1-type ligand production was observed in conjunction with phytoplankton growth under Fe-limiting conditions. The results presented here support and add a quasi-Lagrangian perspective to previous observations of dFe and macronutrient cycling over space and time within the California coastal upwelling regime, including Fe limitation within the phytoplankton community in this region and the biological production of Fe-binding ligands concomitant with Fe limitation. (C) 2011 Elsevier B.V. All rights reserved.

King, AL, Barbeau KA.  2011.  Dissolved iron and macronutrient distributions in the southern California Current System. Journal of Geophysical Research-Oceans. 116   10.1029/2010jc006324   AbstractWebsite

The distribution of dissolved iron in the southern California Current System (sCCS) is presented from seven research cruises between 2002 and 2006. Dissolved iron concentrations were generally low in most of the study area (<0.5 nM), although high mixed layer and water column dissolved iron concentrations (up to 8 nM) were found to be associated with coastal upwelling, both along the continental margin and some island platforms. A significant supply of iron was probably not from a deep remineralized source but rather from the continental shelf and bottom boundary layer as identified in previous studies along the central and northern California coast. With distance offshore, dissolved iron decreased more rapidly relative to nitrate in a transition zone 10-250 km offshore during spring and summer, resulting in relatively high ratios of nitrate: dissolved iron. Higher nitrate: dissolved iron ratios could be the result of utilization and scavenging in addition to an overall lower supply of iron relative to nitrate in the offshore transition zones. The low supply of iron leads to phytoplankton iron limitation and a depletion in silicic acid relative to nitrate in the coastal upwelling and transition zones of the sCCS.