Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Hogle, SL, Thrash JC, Dupont CL, Barbeau KA.  2016.  Trace metal acquisition by marine heterotrophic bacterioplankton with contrasting trophic strategies. Applied and Environmental Microbiology. 82:1613-1624.   10.1128/aem.03128-15   AbstractWebsite

Heterotrophic bacteria in the SAR11 and Roseobacter lineages shape the marine carbon, nitrogen, phosphorous, and sulfur cycles, yet they do so having adopted divergent ecological strategies. Currently, it is unknown whether these globally significant groups partition into specific niches with respect to micronutrients (e.g., trace metals) and how that may affect marine trace metal cycling. Here, we used comparative genomics to identify diverse iron, cobalt, nickel, copper, and zinc uptake capabilities in SAR11 and Roseobacter genomes and uncover surprising unevenness within and between lineages. The strongest predictors for the extent of the metal uptake gene content are the total number of transporters per genome, genome size, total metal transporters, and GC content, but numerous exceptions exist in both groups. Taken together, our results suggest that SAR11 have strongly minimized their trace metal uptake versatility, with high-affinity zinc uptake being a unique exception. The larger Roseobacter genomes have greater trace metal uptake versatility on average, but they also appear to have greater plasticity, resulting in phylogenetically similar genomes having largely different capabilities. Ultimately, phylogeny is predictive of the diversity and extent of 20 to 33% of all metal uptake systems, suggesting that specialization in metal utilization mostly occurred independently from overall lineage diversification in both SAR11 and Roseobacter. We interpret these results as reflecting relatively recent trace metal niche partitioning in both lineages, suggesting that concentrations and chemical forms of metals in the marine environment are important factors shaping the gene content of marine heterotrophic Alphaproteobacteria of the SAR11 and Roseobacter lineages.

Hopkinson, BM, Barbeau KA.  2012.  Iron transporters in marine prokaryotic genomes and metagenomes. Environmental Microbiology. 14:114-128.   10.1111/j.1462-2920.2011.02539.x   AbstractWebsite

In the pelagic environment, iron is a scarce but essential micronutrient. The iron acquisition capabilities of selected marine bacteria have been investigated, but the recent proliferation of marine prokaryotic genomes and metagenomes offers a more comprehensive picture of microbial iron uptake pathways in the ocean. Searching these data sets, we were able to identify uptake mechanisms for Fe3+, Fe2+ and iron chelates (e.g. siderophore and haem iron complexes). Transport of iron chelates is accomplished by TonB-dependent transporters (TBDTs). After clustering the TBDTs from marine prokaryotic genomes, we identified TBDT clusters for the transport of hydroxamate and catecholate siderophore iron complexes and haem using gene neighbourhood analysis and co-clustering of TBDTs of known function. The genomes also contained two classes of siderophore biosynthesis genes: NRPS (non-ribosomal peptide synthase) genes and NIS (NRPS Independent Siderophore) genes. The most common iron transporters, in both the genomes and metagenomes, were Fe3+ ABC transporters. Iron uptake-related TBDTs and siderophore biosynthesis genes were less common in pelagic marine metagenomes relative to the genomic data set, in part because Pelagibacter ubique and Prochlorococcus species, which almost entirely lacked these Fe uptake systems, dominate the metagenomes. Our results are largely consistent with current knowledge of iron speciation in the ocean, but suggest that in certain niches the ability to acquire siderophores and/or haem iron chelates is beneficial.