Publications

Export 8 results:
Sort by: Author Title Type [ Year  (Asc)]
1996
Barbeau, K, Moffett JW, Caron DA, Croot PL, Erdner DL.  1996.  Role of protozoan grazing in relieving iron limitation of phytoplankton. Nature. 380:61-64.   10.1038/380061a0   AbstractWebsite

RECENT evidence indicates that iron is a limiting factor in primary production in some areas of the oceans(1,2). In sea water, iron is largely present in the form of particulate and colloidal phases which are apparently unavailable for uptake by phytoplankton(3-5). Several mechanisms have been proposed whereby non-reactive iron may be converted into more labile forms (for example, thermal dissolution(6), photochemical reactions(7,8) and ligand complexation(9)). Here we report that digestion of colloidal iron in the acidic food vacuoles of protozoan grazers may be a mechanism for the generation of 'bioavailable' iron from refractory iron phases. We have demonstrated several grazer-mediated effects on colloidal ferrihydrite, including a decrease in colloid size, an increase in colloid lability as determined by competitive ligand-exchange techniques, and an increase in the bioavailability of colloids to iron-limited diatoms. These results indicate that protozoan grazers may significantly enhance the supply of iron to marine phytoplankton from terrestrial sources.

1997
Moffett, JW, Brand LE, Croot PL, Barbeau KA.  1997.  Cu Speciation and Cyanobacterial Distribution in Harbors Subject to Anthropogenic Cu Inputs. Limnology and Oceanography. 42:789-799.: American Society of Limnology and Oceanography   10.2307/2838883   AbstractWebsite

Cu speciation was studied in four harbors on the south coast of Cape Cod, Massachusetts, that are exposed to varying degress of Cu contamination from anthropogenic sources. Copper in waters outside the harbors was complexed by ∼ 10 nM of very strong chelators, twofold higher than ambient Cu concentrations. In Eel Pond (Woods Hole) and Falmouth Inner Harbor, total dissolved Cu concentrations were 7-10-fold higher. However, because the strong chelators were saturated in these two harbors, the free Cu increased by 1,000-fold, from $\thicksim 10^13 M$ to $\thicksim 10^-10 M$ . There was no evidence for any enhanced biological production of chelators in response to the elevated Cu concentrations. However, cell densities of cyanobacteria, which have been proposed as a source of strong Cu chelators in seawater, decline drastically in the high Cu harbors. These trends are consistent with culture studies showing that Synechococcus sp., the predominant cyanophyte in these waters, shows a dramatic decrease in growth rates above a free Cu2+ level of 10-11 M. In Great Pond and Waquoit Bay, which showed no significant Cu contamination or saturation of strong ligands, cyanobacterial cell densities showed little or no decrease. Results suggest that significant anthropogenic inputs of Cu may overwhelm processes occurring in seawater that lead Cu and strong chelator concentrations to approach comparable levels.

2015
Dupont, CL, McCrow JP, Valas R, Moustafa A, Walworth N, Goodenough U, Roth R, Hogle SL, Bai J, Johnson ZI, Mann E, Palenik B, Barbeau KA, Craig Venter J, Allen AE.  2015.  Genomes and gene expression across light and productivity gradients in eastern subtropical Pacific microbial communities. ISME J. 9:1076-1092.: International Society for Microbial Ecology   10.1038/ismej.2014.198   Abstract

Transitions in community genomic features and biogeochemical processes were examined in surface and subsurface chlorophyll maximum (SCM) microbial communities across a trophic gradient from mesotrophic waters near San Diego, California to the oligotrophic Pacific. Transect end points contrasted in thermocline depth, rates of nitrogen and CO2 uptake, new production and SCM light intensity. Relative to surface waters, bacterial SCM communities displayed greater genetic diversity and enrichment in putative sulfur oxidizers, multiple actinomycetes, low-light-adapted Prochlorococcus and cell-associated viruses. Metagenomic coverage was not correlated with transcriptional activity for several key taxa within Bacteria. Low-light-adapted Prochlorococcus, Synechococcus, and low abundance gamma-proteobacteria enriched in the>3.0-[mu]m size fraction contributed disproportionally to global transcription. The abundance of these groups also correlated with community functions, such as primary production or nitrate uptake. In contrast, many of the most abundant bacterioplankton, including SAR11, SAR86, SAR112 and high-light-adapted Prochlorococcus, exhibited low levels of transcriptional activity and were uncorrelated with rate processes. Eukaryotes such as Haptophytes and non-photosynthetic Aveolates were prevalent in surface samples while Mamielles and Pelagophytes dominated the SCM. Metatranscriptomes generated with ribosomal RNA-depleted mRNA (total mRNA) coupled to in vitro polyadenylation compared with polyA-enriched mRNA revealed a trade-off in detection eukaryotic organelle and eukaryotic nuclear origin transcripts, respectively. Gene expression profiles of SCM eukaryote populations, highly similar in sequence identity to the model pelagophyte Pelagomonas sp. CCMP1756, suggest that pelagophytes are responsible for a majority of nitrate assimilation within the SCM.

Pizeta, I, Sander SG, Hudson RJM, Omanovic D, Baars O, Barbeau KA, Buck KN, Bundy RM, Carrasco G, Croot PL, Garnier C, Gerringa LJA, Gledhill M, Hirose K, Kondo Y, Laglera LM, Nuester J, Rijkenberg MJA, Takeda S, Twining BS, Wells M.  2015.  Interpretation of complexometric titration data: An intercomparison of methods for estimating models of trace metal complexation by natural organic ligands. Marine Chemistry. 173:3-24.   10.1016/j.marchem.2015.03.006   AbstractWebsite

With the common goal of more accurately and consistently quantifying ambient concentrations of free metal ions and natural organic ligands in aquatic ecosystems, researchers from 15 laboratories that routinely analyze trace metal speciation participated in an intercomparison of statistical methods used to model their most common type of experimental dataset, the complexometric titration. All were asked to apply statistical techniques that they were familiar with to model synthetic titration data that are typical of those obtained by applying state-of-the-art electrochemical methods - anodic stripping voltammetry (ASV) and competitive ligand equilibration-adsorptive cathodic stripping voltammetry (CLE-ACSV) - to the analysis of natural waters. Herein, we compare their estimates for parameters describing the natural ligands, examine the accuracy of inferred ambient free metal ion concentrations (]M-f]), and evaluate the influence of the various methods and assumptions used on these results. The ASV-type titrations were designed to test each participant's ability to correctly describe the natural ligands present in a sample when provided with data free of measurement error, i.e., random noise. For the three virtual samples containing just one natural ligand, all participants were able to correctly identify the number of ligand classes present and accurately estimate their parameters. For the four samples containing two or three ligand classes, a few participants detected too few or too many classes and consequently reported inaccurate 'measurements' of ambient [M-f]. Since the problematic results arose from human error rather than any specific method of analyzing the data, we recommend that analysts should make a practice of using one's parameter estimates to generate simulated (back-calculated) titration curves for comparison to the original data. The root-mean-squared relative error between the fitted observations and the simulated curves should be comparable to the expected precision of the analytical method and upon visual inspection the distribution of residuals should not be skewed. Modeling the synthetic, CLE-ACSV-type titration dataset, which comprises 5 titration curves generated at different analytical-windows or levels of competing ligand added to the virtual sample, proved to be more challenging due to the random measurement error that was incorporated. Comparison of the submitted results was complicated by the participants' differing interpretations of their task. Most adopted the provided 'true' instrumental sensitivity in modeling the CLE-ACSV curves, but several estimated sensitivities using internal calibration, exactly as is required for actual samples. Since most fitted sensitivities were biased low, systematic error in inferred ambient [M-f] and in estimated weak ligand (L-2) concentrations resulted. The main distinction between the mathematical approaches taken by participants lies in the functional form of the speciation model equations, with their implicit definition of independent and dependent or manipulated variables. In 'direct modeling', the dependent variable is the measured [M-f] (or I-p) and the total metal concentration ([M](T)) is considered independent In other, much more widely used methods of analyzing titration data - classical linearization, best known as van den Berg/Ruzic and isotherm fitting by nonlinear regression, best known as the langmuir or Gerringa methods - [M-f] is defined as independent and the dependent variable calculated from both [M](T) and [M-f]. Close inspection of the biases and variability in the estimates of ligand parameters and in predictions of ambient [M-f] revealed that the best results were obtained by the direct approach. Linear regression of transformed data yielded the largest bias and greatest variability, while non-linear isotherm fitting generated results with mean bias comparable to direct modeling, but also with greater variability. Participants that performed a unified analysis of ACSV titration curves at multiple detection windows for a sample improved their results regardless of the basic mathematical approach taken. Overall, the three most accurate sets of results were obtained using direct modeling of the unified multiwindow dataset, while the single most accurate set of results also included simultaneous calibration. We therefore recommend that where sample volume and time permit, titration experiments for all natural water samples be designed to include two or more detection windows, especially for coastal and estuarine waters. It is vital that more practical experimental designs for multi-window titrations be developed. Finally, while all mathematical approaches proved to be adequate for some datasets, matrix-based equilibrium models proved to be most naturally suited for the most challenging cases encountered in this work, i.e., experiments where the added ligand in ACSV became titrated. The ProMCC program (Omanovic et al., this issue) as well as the Excel Add-in based KINETEQL Multiwindow Solver spreadsheet (Hudson, 2014) have this capability and have been made available for public use as a result of this intercomparison exercise. (C) 2015 The Authors. Published by Elsevier B.V.

2016
Semeniuk, DM, Taylor RL, Bundy RM, Johnson WK, Cullen JT, Robert M, Barbeau KA, Maldonado MT.  2016.  Iron-copper interactions in iron-limited phytoplankton in the northeast subarctic Pacific Ocean. Limnology and Oceanography. 61:279-297.   10.1002/lno.10210   AbstractWebsite

In August 2010, iron (Fe) and Fe and copper (Cu) addition incubation experiments were conducted at two low Fe stations (P20 and P26) along Line P, off the western coast of British Columbia, to investigate Cu physiology in Fe- and Fe-light co-limited phytoplankton. Chlorophyll a concentrations ([Chl a]), maximum variable fluorescence yield (F-v/F-m), and Fe uptake rates by the Cu-dependent high-affinity Fe transport system (HAFeTS) were measured. Additions of Fe resulted in an increase in [Chl a] and F-v/F-m at both stations compared with the controls, regardless of light availability, and confirmed that the phytoplankton communities were Fe-limited. Uptake of Fe by the HAFeTS in both incubations increased with the addition of Fe, and likely reflects luxury Fe uptake and storage. While the in situ inorganic Cu concentrations were similar to those that can induce Cu-limitation in laboratory cultures, increasing Cu availability had no effect on biomass accumulation during both incubations, regardless of Fe availability or light regime. At P26, additions of 1 nmol L-1 CuSO4 resulted in a short-term increase in F-v/F-m of the phytoplankton community, and an increase in Fe uptake rates by large phytoplankton (>5 mu m), but only when light was not limiting. These data confirm a complex interaction between light, Fe and Cu physiology in indigenous phytoplankton communities, and suggest that these interactions may be both spatially heterogeneous and different for different phytoplankton size classes.

Bundy, RM, Jiang M, Carter M, Barbeau KA.  2016.  Iron-binding ligands in the southern California Current System: Mechanistic studies. Frontiers in Marine Science. 3:27.   10.3389/fmars.2016.00027   Abstract

The distributions of dissolved iron and organic iron-binding ligands were examined in water column profiles and deckboard incubation experiments in the southern California Current System (sCCS) along a transition from coastal to semi-oligotrophic waters. Analysis of the iron-binding ligand pool by competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV) using multiple analytical windows (MAWs) revealed three classes of iron-binding ligands present throughout the water column (L1-L3), whose distributions closely matched those of dissolved iron and nitrate. Despite significant biogeochemical gradients, ligand profiles were similar between stations, with surface minima in strong ligands (L1 and L2), and relatively constant concentrations of weaker ligands (L3) down to 500 m. A phytoplankton grow-out incubation, initiated from an iron-limited water mass, showed dynamic temporal cycling of iron-binding ligands. A biological iron model was able to capture the patterns of the strong ligands in the grow-out incubation relatively well with only the microbial community as a biological source. An experiment focused on remineralization of particulate organic matter showed production of both strong and weak iron-binding ligands by the heterotrophic community, supporting a mechanism for in-situ production of both strong and weak iron-binding ligands in the subsurface water column. Photochemical experiments showed a variable influence of sunlight on the degradation of natural iron-binding ligands, providing some evidence to explain differences in surface ligand concentrations between stations. Patterns in ligand distributions between profiles and in the incubation experiments were primarily related to macronutrient concentrations, suggesting microbial remineralization processes might dominate on longer time-scales over short-term changes associated with photochemistry or phytoplankton growth.

2017
Stukel, MR, Aluwihare LI, Barbeau KA, Chekalyuk AM, Goericke R, Miller AJ, Ohman MD, Ruacho A, Song H, Stephens BM, Landry MR.  2017.  Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction. Proceedings of the National Academy of Sciences of the United States of America. 114:1252-1257.   10.1073/pnas.1609435114   AbstractWebsite

Enhanced vertical carbon transport (gravitational sinking and subduction) at mesoscale ocean fronts may explain the demonstrated imbalance of new production and sinking particle export in coastal upwelling ecosystems. Based on flux assessments from U-238:Th-234 disequilibrium and sediment traps, we found 2 to 3 times higher rates of gravitational particle export near a deep-water front (305 mg C.m(-2).d(-1)) compared with adjacent water or to mean (nonfrontal) regional conditions. Elevated particle flux at the front wasmechanistically linked to Fe-stressed diatoms and high-mesozooplankton fecal pellet production. Using a data assimilative regional ocean model fit to measured conditions, we estimate that an additional similar to 225 mg C.m(-2).d(-1) was exported as subduction of particle-rich water at the front, highlighting a transport mechanism that is not captured by sediment traps and is poorly quantified by most models and in situ measurements. Mesoscale fronts may be responsible for over a quarter of total organic carbon sequestration in the California Current and other coastal upwelling ecosystems.

2019
Chappell, PD, Armbrust EV, Barbeau KA, Bundy RM, Moffett JW, Vedamati J, Jenkins BD.  2019.  Patterns of diatom diversity correlate with dissolved trace metal concentrations and longitudinal position in the northeast Pacific coastal-offshore transition zone. Marine Ecology Progress Series. 609:69-86.   10.3354/meps12810   AbstractWebsite

Diatoms are important primary producers in the northeast Pacific Ocean, with their productivity closely linked to pulses of trace elements in the western high nitrate, low chlorophyll (HNLC) region of the oceanographic time series transect 'Line P.' Recently, the coastal-HNLC transition zone of the Line P transect was identified as a hotspot of phytoplankton productivity, potentially controlled by a combination of trace element and macronutrient concentrations. Here we describe diatom community composition in the eastern Line P transect, including the coastal- HNLC transition zone, with a method using high-throughput sequencing of diatom 18S gene amplicons. We identified significant correlations between shifting diatom community composition and longitude combined with concentrations of dissolved copper and 2 other dissolved trace metals (dissolved Fe [dFe] and/or dissolved zinc) and/or a physical factor (salinity or density). None of these variables on its own was significantly correlated with shifts in community composition, and 3 of the factors (dFe, salinity, and density) correlated with one another. Longitude could incorporate multiple factors that may influence diatom communities, including distance from shore, proximity of sampling stations, and an integration of previous pulses of macro- and micro-nutrients. We also evaluated in situ Fe limitation of the diatom Thalassiosira oceanica using a quantitative reverse-transcription polymerase chain reaction method, and found biological evidence of Fe stress in samples from the coastal-HNLC transition zone. Combined, our results support a prior hypothesis that dissolved trace metals as well as longitudinal distance may be important to diatom diversity in the coastal-HNLC transition zone of the Line P transect.