Publications

Export 71 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Arrigo, KR, Perovich DK, Pickart RS, Brown ZW, van Dijken GL, Lowry KE, Mills MM, Palmer MA, Balch WM, Bates NR, Benitez-Nelson CR, Brownlee E, Frey KE, Laney SR, Mathis J, Matsuoka A, Greg Mitchell B, Moore GWK, Reynolds RA, Sosik HM, Swift JH.  2014.  Phytoplankton blooms beneath the sea ice in the Chukchi sea. Deep Sea Research Part II: Topical Studies in Oceanography. 105:1-16.   10.1016/j.dsr2.2014.03.018   AbstractWebsite

In the Arctic Ocean, phytoplankton blooms on continental shelves are often limited by light availability, and are therefore thought to be restricted to waters free of sea ice. During July 2011 in the Chukchi Sea, a large phytoplankton bloom was observed beneath fully consolidated pack ice and extended from the ice edge to >100 km into the pack. The bloom was composed primarily of diatoms, with biomass reaching 1291 mg chlorophyll a m−2 and rates of carbon fixation as high as 3.7 g C m−2 d−1. Although the sea ice where the bloom was observed was near 100% concentration and 0.8–1.2 m thick, 30–40% of its surface was covered by melt ponds that transmitted 4-fold more light than adjacent areas of bare ice, providing sufficient light for phytoplankton to bloom. Phytoplankton growth rates associated with the under-ice bloom averaged 0.9 d−1 and were as high as 1.6 d−1. We argue that a thinning sea ice cover with more numerous melt ponds over the past decade has enhanced light penetration through the sea ice into the upper water column, favoring the development of these blooms. These observations, coupled with additional biogeochemical evidence, suggest that phytoplankton blooms are currently widespread on nutrient-rich Arctic continental shelves and that satellite-based estimates of annual primary production in waters where under-ice blooms develop are ~10-fold too low. These massive phytoplankton blooms represent a marked shift in our understanding of Arctic marine ecosystems.

Williams, NL, Feely RA, Sabine CL, Dickson AG, Swift JH, Talley LD, Russell JL.  2015.  Quantifying anthropogenic carbon inventory changes in the Pacific sector of the Southern Ocean. Marine Chemistry. 174:147-160.   10.1016/j.marchem.2015.06.015   AbstractWebsite

The Southern Ocean plays a major role in mediating the uptake, transport, and long-term storage of anthropogenic carbon dioxide (CO2) into the deep ocean. Examining the magnitude and spatial distribution of this oceanic carbon uptake is critical to understanding how the earth's carbon system will react to continued increases in this greenhouse gas. Here, we use the extended multiple linear regression technique to quantify the total and anthropogenic change in dissolved inorganic carbon (DIC) along the S04P and P16S CLIVAR/U.S. Global Ocean Carbon and Repeat Hydrography Program lines south of 67 degrees S in the Pacific sector of the Southern Ocean between 1992 and 2011 using discrete bottle measurements from repeat occupations. Along the S04P section, which is located in the seasonal sea ice zone south of the Antarctic Circumpolar Current in the Pacific, the anthropogenic component of the DIC increase from 1992 to 2011 is mostly found in the Antarctic Surface Water (AASW, upper 100 m), while the increase in DIC below the mixed layer in the Circumpolar Deep Water can be primarily attributed to either a slowdown in circulation or decreased ventilation of deeper, high CO2 waters. In the AASW we calculate an anthropogenic increase in DIC of 12-18 mu mol kg(-1) and an average storage rate of anthropogenic CO2 of 0.10 +/- 0.02 mol m(-2) yr(-1) for this region compared to a global average of 0.5 +/- 0.2 mol m(-2) yr(-1). In surface waters this anthropogenic CO2 uptake results in an average pH decrease of 0.0022 +/- 0.0004 pH units yr(-1), a 0.47 +/- 0.10% yr(-1) decrease in the saturation state of aragonite (Omega(Aragonite)) and a 2.0 +/- 0.7 m yr(-1) shoaling of the aragonite saturation horizons (calculated for the Omega(Aragonite) = 1.3 contour). (C) 2015 Published by Elsevier B.V.

Ekwurzel, B, Schlosser P, Mortlock RA, Fairbanks RG, Swift JH.  2001.  River runoff, sea ice meltwater, and Pacific water distribution and mean residence times in the Arctic Ocean. Journal of Geophysical Research-Oceans. 106:9075-9092.   10.1029/1999jc000024   AbstractWebsite

Hydrographic and tracer data collected during ARK IV/3 (FS Polarstern in 1987), ARCTIC91 (IB Oden), and AOS94 (CCGS Louis S. St-Laurent) expeditions reveal the evolution of the near-surface waters in the Arctic Ocean during the late 1980s and early 1990s. Salinity, nutrients, dissolved oxygen, and delta (18)O data are used to quantify the components of Arctic freshwater: river runoff, sea ice meltwater, and Pacific water. The calculated river runoff fractions suggest that in 1994 a large portion of water from the Pechora, Oh, Yenisey, Kotuy, and Lena Rivers did not flow off the shelf closest to their river deltas, but remained on the shelf and traveled via cyclonic circulation into the Laptev and East Siberian Seas. River runoff flowed off the shelf at the Lomonosov Ridge and most left the shelf at the Mendeleyev Ridge. ARCTIC91 and AOS94 Pacific water fraction estimates of Upper Halocline Water, the traditionally defined core of the Pacific water mass, document a decrease in extent compared to historical data. The front between Atlantic water and Pacific water shifted from the Lomonosov Ridge location in 1991 to the Mendeleyev Ridge in 1994. The relative age structure of the upper waters is described by using the (3)H-(3)He age. The mean (3)H-(3)He age measured in the halocline within the salinity surface of 33.1 +/- 0.3 is 4.3 +/- 1.7 years and that for the 34.2 +/- 0.2 salinity surface is 9.6 +/- 4.6 years. Lateral variations in the relative age structure within the halocline and Atlantic water support the well-known cyclonic boundary current circulation.

Schlosser, P, Swift JH, Lewis D, Pfirman SL.  1995.  The role of the large-scale Arctic Ocean circulation in the transport of contaminants. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 42:1341-1367.   10.1016/0967-0645(95)00045-3   AbstractWebsite

The key features of the large-scale circulation of the Arctic Ocean are reviewed based on distributions of hydrographic parameters and natural and anthropogenic trace substances. Salinity and mass balances, as well as a combination of the tracers tritium and delta(18)O, suggest a mean residence time of the shelf waters in the Siberian seas of about 3 years. Potential pathways of pollutants released to the Siberian shelf seas from the dumpsites or from river runoff are inferred from the distributions of delta(18)O and salinity. Transit times needed for dissolved contaminants to cross the central Arctic basins (several years to one or two decades in near-surface waters) and mean residence times of contaminants in the intermediate (several decades) and deep waters (several centuries) are estimated from the distribution of transient tracers (tritium and its radioactive decay product, He-3) and ''steady-state'' tracers (C-14 and Ar-39).

Aagaard, K, Fahrbach E, Meincke J, Swift JH.  1991.  Saline outflow from the Arctic Ocean: Its contribution to the deep waters of the Greenland, Norwegian, and Iceland seas. Journal of Geophysical Research-Oceans. 96:20433-20441.   10.1029/91jc02013   AbstractWebsite

Since 1985 various investigators have proposed that Norwegian Sea deep water (NSDW) is formed by mixing of warm and saline deep water from the Arctic Ocean with the much colder and fresher deep water formed by convection in the Greenland Sea (GSDW). We here report on new observations which suggest significant modification and expansion of this conceptual model. We find that saline outflows from the Arctic Ocean result in several distinct intermediate and deep salinity maxima within the Greenland Sea; the southward transport of the two most saline modes is probably near 2 Sv. Mixing of GSDW and the main outflow core found over the Greenland slope, derived from about 1700 m in the Arctic Ocean, cannot by itself account for the properties of NSDW. Instead, the formation of NSDW must at least in part involve a source which in the Arctic Ocean is found below 2000 m. The mixing of various saline outflows is diapycnal. While significant NSDW production appears to occur in northern Fram Strait, large amounts of saline Arctic Ocean outflow also traverse the western Greenland Sea without mixing and enter the Iceland Sea. During the past decade, deep convection in the Greenland Sea has been greatly reduced, while deep outflow from the Arctic Ocean appears to have continued, resulting in a markedly warmer, slightly more saline, and less dense deep regime in the Greenland Sea.

Swift, JH, Aagaard K.  1981.  Seasonal transitions and water mass formation in the Iceland and Greenland seas. Deep-Sea Research Part a-Oceanographic Research Papers. 28:1107-1129.   10.1016/0198-0149(81)90050-9   AbstractWebsite

The dense waters of the Iceland and Greenland sea gyres are not simply the product of a gradual transition between cold, relatively fresh polar waters on the west and warmer, saline Atlantic water on the east, but instead constitute a unique hydrographic region, bounded by the polar and arctic fronts, which we term the arctic domain. Although deep and bottom water is the best-known water mass formed in the arctic domain, the region also produces a spectrum of dense intermediate water types in winter. Our study concentrates upon water mass formation in the Iceland Sea, where the principal winter product is an intermediate water mass nearly as cold as the deep water, but slightly less saline and therefore always lying above the deep water. The intermediate water mass produced in greatest volume in the Greenland Sea is warmer and more saline, although of nearly the same density as that produced in the Iceland Sea. The principal difference between the seasonal transitions in the Greenland and Iceland seas is that the transition in the Greenland Sea involves slightly more saline water than does that in the Iceland Sea, due to a more pronounced contribution of cooled Atlantic water. Subsequent along-isopycnal mixing of the intermediate water masses produces water which needs only to undergo a final cooling stage to be transformed into new deep and bottom water.

Cooper, AR, Varshney.Ak, Sarkar SK, Swift J, Yen F, Klein L.  1972.  Some aspects of the thermal history of lunar glass. Journal of the American Ceramic Society. 55:260-264.   10.1111/j.1151-2916.1972.tb11276.x   AbstractWebsite

Electron microprobe examination revealed that glassy lunar fragments had inclusions as well as boundaries between mineral glasses of different compositions. Glassy lunar spherules (40 to 60 μm in diameter) showed detectable heterogeneity less marked than that of the fragments. The room-temperature refractive indices and densities of the spherules are changed by heat-treating them at 500° to 7O0°C. The large increases (as much as 2% in density and 0.7% in index of refraction) are difficult to explain on the basis of classical glass-transition phenomena alone unless extremely rapid cooling rates are assumed. Further, the spherules darkened significantly when they were heated in air or a medium vacuum (∼10−5 mm Hg) above 625°C.

Jones, EP, Anderson LG, Jutterstrom S, Swift JH.  2008.  Sources and distribution of fresh water in the East Greenland Current. Progress in Oceanography. 78:37-44.   10.1016/j.pocean.2007.06.003   AbstractWebsite

Fresh water flowing from the Arctic Ocean via the East Greenland Current influences deep water formation in the Nordic Seas as well as the salinity of the surface and deep waters flowing from there. This fresh water has three sources: Pacific water (relatively fresh cf. Atlantic water), river runoff, and sea ice meltwater. To determine the relative amounts of the three sources of fresh water, in May 2002 we collected water samples across the East Greenland Current in sections from 81.5 degrees N to the Irminger Sea south of Denmark Strait. We used nitrate-phosphate relationships to distinguish Pacific waters from Atlantic waters, salinity to obtain the sum of sea ice melt water and river runoff water, and total alkalinity to distinguish the latter. River runoff contributed the largest part of the total fresh water component, in some regions with some inventories exceeding 12 m. Pacific fresh water (Pacific source water S similar to 32 cf Atlantic source water S similar to 34.9) typically provided about 1/3 of the river runoff contribution. Sea ice meltwater was very nearly non-existent in the surface waters of all sections, likely at least in part as a result of the samples being collected before the onset of the melt season. The fresh water from the Arctic Ocean was strongly confined to near the Greenland coast. We thus conjecture that the main source of fresh water from the Arctic Ocean most strongly impacting deep convection in the Nordic Seas would be sea ice as opposed to fresh water in the liquid phase, i.e., river runoff, Pacific fresh water, and sea ice meltwater. Crown Copyright (C) 2008 Published by Elsevier Ltd. All rights reserved.

Jeansson, E, Jutterstroem S, Rudels B, Anderson LG, Olsson KA, Jones EP, Smethie WM, Swift JH.  2008.  Sources to the East Greenland Current and its contribution to the Denmark Strait Overflow. Progress in Oceanography. 78:12-28.   10.1016/j.pocean.2007.08.031   AbstractWebsite

Data from the East Greenland Current in 2002 are evaluated using optimum multiparameter analysis. The current is followed from north of Fram Strait to the Denmark Strait Sill and the contributions of different source waters, in mass fractions, are deduced. From the results it can be concluded that, at least in spring 2002, the East Greenland Current was the main source for the waters found at the Denmark Strait Sill, contributing to the overflow into the North Atlantic. The East Greenland Current carried water masses from different source regions in the Arctic Ocean, the West Spitsbergen Current and the Greenland Sea. The results agree well with the known circulation of the western Nordic Seas but also add knowledge both to the quantification and to the mixing processes, showing the importance of the locally formed Greenland Sea Arctic Intermediate Water for the East Greenland Current and the Denmark Strait. (C) 2008 Elsevier Ltd. All rights reserved.

Aagaard, K, Swift JH, Carmack EC.  1985.  Thermohaline circulation in the Arctic Mediterranean Seas. Journal of Geophysical Research-Oceans. 90:4833-4846.   10.1029/JC090iC03p04833   AbstractWebsite

The renewal of the deep North Atlantic by the various overflows of the Greenland-Scotland ridges is only one manifestation of the convective and mixing processes which occur in the various basins and shelf areas to the north: the Arctic Ocean and the Greenland, Iceland, and Norwegian seas, collectively called the Arctic Mediterranean. The traditional site of deep ventilation for these basins is the Greenland Sea, but a growing body of evidence also points to the Arctic Ocean as a major source of deep water. This deep water is relatively warm and saline, and it appears to be a mixture of dense, brine-enriched shelf water with intermediate strata in the Arctic Ocean. The deep water exits the Arctic Ocean along the Greenland slope to mix with the Greenland Sea deep water. Conversely, very cold low-salinity deep water from the Greenland Sea enters the Arctic Ocean west of Spitsbergen. Within the Arctic Ocean, the Lomonosov Ridge excludes the Greenland Sea deep water from the Canadian Basin, leaving the latter warm, saline, and rich in silica. In general, the entire deep-water sphere of the Arctic Mediterranean is constrained by the Greenland-Scotland ridges to circulate internally. Therefore it is certain of the intermediate waters formed in the Greenland and Iceland seas which ventilate the North Atlantic. These waters have a very short residence time in their formation areas and are therefore able to rapidly transmit surface-induced signals into the deep North Atlantic.

Jones, EP, Swift JH, Anderson LG, Lipizer M, Civitarese G, Falkner KK, Kattner G, McLaughlin F.  2003.  Tracing Pacific water in the North Atlantic Ocean. Journal of Geophysical Research-Oceans. 108   10.1029/2001jc001141   AbstractWebsite

[1] In the Arctic Ocean, Pacific source water can be distinguished from Atlantic source water by nitrate-phosphate concentration relationships, with Pacific water having higher phosphate concentrations relative to those of nitrate. Furthermore, Pacific water, originally from the inflow through Bering Strait, is clearly recognizable in the outflows of low-salinity waters from the Arctic Ocean to the northern North Atlantic Ocean through the Canadian Arctic Archipelago and through Fram Strait. In the Canadian Arctic Archipelago, we observe that almost all of the waters flowing through Lancaster and Jones sounds, most of the water in the top 100 m in Smith Sound (containing the flow through Nares Strait), and possibly all waters in Hudson Bay contain no water of Atlantic origin. Significant amounts of Pacific water are also observed along the western coast of Baffin Bay, along the coast of Labrador, and above the 200-m isobath of the Grand Banks. There is a clear signal of Pacific water flowing south through Fram Strait and along the east coast of Greenland extending at least as far south as Denmark Strait. Pacific water signature can be seen near the east coast of Greenland at 66degreesN, but not in data at 60degreesN. Temporal variability in the concentrations of Pacific water has been observed at several locations where multiple-year observations are available.

Downes, SM, Key RM, Orsi AH, Speer KG, Swift JH.  2012.  Tracing Southwest Pacific Bottom Water Using Potential Vorticity and Helium-3. Journal of Physical Oceanography. 42:2153-2168.   10.1175/jpo-d-12-019.1   AbstractWebsite

This study uses potential vorticity and other tracers to identify the pathways of the densest form of Circumpolar Deep Water in the South Pacific, termed "Southwest Pacific Bottom Water" (SPBW), along the 28.2 kg m(-3) surface. This study focuses on the potential vorticity signals associated with three major dynamical processes occurring in the vicinity of the Pacific-Antarctic Ridge: 1) the strong flow of the Antarctic Circumpolar Current (ACC), 2) lateral eddy stirring, and 3) heat and stratification changes in bottom waters induced by hydrothermal vents. These processes result in southward and downstream advection of low potential vorticity along rising isopycnal surfaces. Using delta He-3 released from the hydrothermal vents, the influence of volcanic activity on the SPBW may be traced across the South Pacific along the path of the ACC to Drake Passage. SPBW also flows within the southern limb of the Ross Gyre, reaching the Antarctic Slope in places and contributes via entrainment to the formation of Antarctic Bottom Water. Finally, it is shown that the magnitude and location of the potential vorticity signals associated with SPBW have endured over at least the last two decades, and that they are unique to the South Pacific sector.

Roemmich, D, McCallister T, Swift J.  1991.  A transpacific hydrographic section along latitude 24°N: the distribution of properties in the subtropical gyre. Deep-Sea Research Part a-Oceanographic Research Papers. 38:S1-S20.   10.1016/S0198-0149(12)80002-1   AbstractWebsite

An intensively sampled transpacific hydrographic section along 24-degrees-N was completed in the spring of 1985. The data are described here in terms of the spatial distribution of properties, the distribution along isopycnal surfaces, and, where possible, the relationship of these distributions to the large-scale circulation of the Pacific Ocean. Near-surface waters of subtropical origin display a salinity maximum in mid-ocean, with lower salinity to the west due to greater rainfall and lower salinity in the east due to advection of water from the north. In the next layers down, containing waters of subpolar origin, the low salinity and high dissolved oxygen concentrations of those waters are most pronounced in the eastern ocean where the subpolar water is swept clockwise into the subtropical gyre. Differences between patterns of dissolved oxygen concentration and salinity indicate that both horizontal advection and upwelling contribute to observed distributions near the eastern boundary and that the two tracers contain independent information. In the upper kilometer, the eastern Pacific is richer in tracer signals and has steeper property gradients than the west. The deep Pacific has long been recognized to be the most uniform of the oceans. Although property gradients are small, they are significant, and it is found that on all isopycnal surfaces below the upper kilometer salinity increases and dissolved oxygen concentration decreases towards the east on basin-wide scales. These zonal gradients are weakest in the abyss, where there is a substantial net input of southern water, and strongest at mid-depth. Vertical diffusion is the likely cause of the uniformity in this pattern over so much of the deep North Pacific, with oxygen consumption in waters of greater age in the east also being a plausible contributor. With a highly sampled data set such as the 24-degrees-N transpacific section it is appropriate to ask how many stations are required to define property distributions and to estimate large-scale circulation and transport. Estimation of geostrophic transport requires high spatial resolution to detect flow near sloping topography at all depths. A 50% decimation of the 24-degrees-N station pattern yields a severe degradation in the estimation of transport.

Marnela, M, Rudels B, Olsson KA, Anderson LG, Jeansson E, Torres DJ, Messias MJ, Swift JH, Watson AJ.  2008.  Transports of Nordic Seas water masses and excess SF6 through Fram Strait to the Arctic Ocean. Progress in Oceanography. 78:1-11.   10.1016/j.pocean.2007.06.004   AbstractWebsite

To determine the exchanges between the Nordic Seas and the Arctic Ocean through Fram Strait is one of the most important aspects, and one of the major challenges, in describing the circulation in the Arctic Mediterranean Sea. Especially the northward transport of Arctic Intermediate Water (AIW) from the Nordic Seas into the Arctic Ocean is little known. In the two-ship study of the circulation in the Nordic Seas, Arctic Ocean - 2002, the Swedish icebreaker Oden operated in the ice-covered areas in and north of Fram Strait and in the western margins of Greenland and Iceland seas, while RV Knorr of Woods Hole worked in the ice free part of the Nordic Seas. Here two hydrographic sections obtained by Oden, augmented by tracer and velocity measurements with Lowered Acoustic Doppler Current Profiler (LADCP), are examined. The first section, reaching from the Svalbard shelf across the Yermak Plateau, covers the region north of Svalbard where inflow to the Arctic Ocean takes place. The second, western, section spans the outflow area extending from west of the Yermak Plateau onto the Greenland shelf. Geostrophic and LADCP derived velocities are both used to estimate the exchanges of water masses between the Nordic Seas and the Arctic Ocean. The geostrophic computations indicate a total flow of 3.6 Sv entering the Arctic on the eastern section. The southward flow on the western section is found to be 5.1 Sv. The total inflow to the Arctic Ocean obtained using the LADCP derived velocities is much larger, 13.6 Sv, and the southward transport on the western section is 13.7 Sv, equal to the northward transport north of Svalbard. Sulphur hexafluoricle (SF(6)) originating from a tracer release experiment in the Greenland Sea in 1996 has become a marker for the circulation of AIW. From the geostrophic velocities we obtain 0.5 Sv and from the LADCP derived velocities 2.8 Sv of AIW flowing into the Arctic. The annual transport of SF(6) into the Arctic Ocean derived from geostrophy is 5 kg/year, which is of the same magnitude as the observed total annual transport into the North Atlantic, while the LADCP measurements (19 kg/year) imply that it is substantially larger. Little SF(6) was found on the western section, confirming the dominance of the Arctic Ocean water masses and indicating that the major recirculation in Fram Strait takes place farther to the south. (C) 2008 Elsevier Ltd. All rights reserved.

Smethie, WM, Swift JH.  1989.  The tritium:krypton-85 age of Denmark Strait Overflow Water and Gibbs Fracture Zone Water just south of Denmark Strait. Journal of Geophysical Research-Oceans. 94:8265-8275.   10.1029/JC094iC06p08265   AbstractWebsite

The opposite time trends of the input of tritium and 85Kr to the surface ocean produce a tritium:85Kr ratio for surface water that is a strong function of time and this ratio was used to determine the age of Denmark Strait Overflow Water (DSOW) and Gibbs Fracture Zone Water (GFZW) just south of Denmark Strait. DSOW and GFZW were identified by their temperature, salinity, oxygen, and silica characteristics in a section of stations 460 km south of Denmark Strait taken during the Transient Tracers in the Ocean/North Atlantic Study expedition in 1981. DSOW was the densest water observed in the section and there were two types, a low salinity type and a slightly higher salinity, more dense type. Both types originated from Arctic Intermediate Water (AIW) behind the Greenland-Iceland ridge. The tritium and 85Kr data reveal that the low salinity type resided behind the Greenland-Iceland ridge for about 1 year before flowing into the Irminger Sea, compared to about 15 years for the higher salinity type. The volume transport of the low salinity type of DSOW was estimated to have a lower limit of 0.8 Sv. GFZW forms in the northeastern Atlantic from a mixture of water flowing out of the Norwegian Sea at about 900 m depth and the northeastern Atlantic water into which it flows. About 70% of the tritium and 85Kr burden of GFZW comes from northeastern Atlantic water and 30% from Norwegian Sea water. The age of GFZW just south of Denmark Strait relative to its formation in the northeastern Atlantic is 7.5+4/−6.5 years which corresponds to a mean current speed of 1.6+10.1/−0.6 cm/s.

Carter, BR, Feely RA, Mecking S, Cross JN, Macdonald AM, Siedlecki SA, Talley LD, Sabine CL, Millero FJ, Swift JH, Dickson AG, Rodgers KB.  2017.  Two decades of Pacific anthropogenic carbon storage and ocean acidification along Global Ocean Ship-lebased Hydrographic Investigations Program sections P16 and P02. Global Biogeochemical Cycles. 31:306-327.   10.1002/2016gb005485   AbstractWebsite

A modified version of the extended multiple linear regression (eMLR) method is used to estimate anthropogenic carbon concentration (C-anth) changes along the Pacific P02 and P16 hydrographic sections over the past two decades. P02 is a zonal section crossing the North Pacific at 30 degrees N, and P16 is a meridional section crossing the North and South Pacific at similar to 150 degrees W. The eMLR modifications allow the uncertainties associated with choices of regression parameters to be both resolved and reduced. Canth is found to have increased throughout the water column from the surface to similar to 1000 m depth along both lines in both decades. Mean column Canth inventory increased consistently during the earlier (1990s-2000s) and recent (2000s-2010s) decades along P02, at rates of 0.53 +/- 0.11 and 0.46 +/- 0.11 mol Cm-2 a(-1), respectively. By contrast, Canth storage accelerated from 0.29 +/- 0.10 to 0.45 +/- 0.11 mol Cm-2 a(-1) along P16. Shifts in water mass distributions are ruled out as a potential cause of this increase, which is instead attributed to recent increases in the ventilation of the South Pacific Subtropical Cell. Decadal changes along P16 are extrapolated across the gyre to estimate a Pacific Basin average storage between 60 degrees S and 60 degrees N of 6.1 +/- 1.5 PgC decade(-1) in the earlier decade and 8.8 +/- 2.2 PgC decade(-1) in the recent decade. This storage estimate is large despite the shallow Pacific Canth penetration due to the large volume of the Pacific Ocean. By 2014, Canth storage had changed Pacific surface seawater pH by -0.08 to -0.14 and aragonite saturation state by -0.57 to -0.82.

Aagaard, K, Barrie L, Carmack E, Garrity C, Jones EP, Lubin D, Macdonald RW, Swift JH, Tucker W, Wheeler PA, Whritner R.  1996.  U.S., Canadian researchers explore Arctic Ocean. EOS, Transactions American Geophysical Union. 77:209,213.   10.1029/96EO00141   Abstract

During July–September 1994, two Canadian and U.S. ice breakers crossed the Arctic Ocean (Figure 1) to investigate the biological, chemical, and physical systems that define the role of the Arctic in global change. The results are changing our perceptions of the Arctic Ocean as a static environment with low biological productivity to a dynamic and productive system. The experiment was called the Arctic Ocean Section (AOS) and the ships were the Canadian Coast Guard ship Louis S. St.-Laurent and the U.S. Coast Guard cutter Polar Sea.

Swift, JH, Aagaard K.  1976.  Upwelling near Samalga Pass. Limnology and Oceanography. 21:399-408. AbstractWebsite
n/a
Ostlund, HG, Possnert G, Swift JH.  1987.  Ventilation rate of the deep Arctic Ocean from carbon 14 data. Journal of Geophysical Research-Oceans. 92:3769-3777.   10.1029/JC092iC04p03769   AbstractWebsite

Application of mass balances of 18O, tritium and salt, plus 14C data show that the deep Eurasian Basin exchanges water with the subarctic Atlantic Ocean on a time scale of 10 to 100 years, while the deep Canada Basin has an exchange time scale of about 700 years. Only small fractions, less than 10 to 15% of the deep waters, originate from the shelves. The deep Canada Basin cannot consist of fossil water from glacial time or from the latest cool climate spell, just 100 to 300 years ago.

Anderson, LG, Bjork G, Holby O, Jones EP, Kattner G, Koltermann KP, Liljeblad B, Lindegren R, Rudels B, Swift J.  1994.  Water masses and circulation in the Eurasian Basin: Results from the Oden 91 expedition. Journal of Geophysical Research-Oceans. 99:3273-3283.   10.1029/93jc02977   AbstractWebsite

The Oden 91 North Pole expedition obtained oceanographic measurements on four sections in the Nansen and Amundsen basins of the Eurasian Basin and in the Makarov Basin of the Canadian Basin, thereby proving the feasibility of carrying out a typical oceanographic program using an icebreaker in the Arctic Ocean. The data show greater spatial variability in water structure and circulation than was apparent from previous data. The results show that a clear front exists between the Eurasian and Canadian basins such that upper halocline water in the Canadian Basin is almost absent from the Eurasian Basin. The lower halocline water produced in the Barents-Kara Sea region permeates much of the Eurasian Basin and flows along the continental slope into the Canadian Basin. The deeper circulation is strongly influenced by topography. Three return flows of the Atlantic layer are identified, one over the Nansen-Gakkel Ridge, one over the Lomonosov Ridge, and a third flowing from the Canadian Basin. The slight differences observed in salinity and temperature characteristics of the deeper waters of the Nansen and Amundsen basins do not lead to an obvious explanation of their origin or flow pattern.

Swift, JH, Jones EP, Aagaard K, Carmack EC, Hingston M, Macdonald RW, McLaughlin FA, Perkin RG.  1997.  Waters of the Makarov and Canada basins. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 44:1503-1529.   10.1016/s0967-0645(97)00055-6   AbstractWebsite

Hydrographic measurements from the 1994 Arctic Ocean Section show how the Makarov and Canada basins of the Arctic Ocean are related, and demonstrate their oceanographic connections to the Eurasian Basin. The inflow into the Makarov Basin consists largely of well-ventilated water within a broad band of densities from a boundary how over the Siberian end of the Lomonosov Ridge. The boundary flow contains a significant component of dense shelf water likely originating in the Barents, Kara, and Laptev Seas. Earlier ice camp data show that the Canada Basin is relatively more isolated from this ventilation source. In the Canada Basin shelf sources influenced by Bering Sea water appear to add cold waters with high silicate concentrations to the halocline and deeper. In 1994 the halocline silicate maximum over the central Makarov Basin was absent, evidence of the recent displacement of the upper (S similar to 33.1) halocline water from the Chukchi-East Siberian Sea region by water from the Eurasian Basin. Much of the Makarov Basin water in and below the halocline is in fact from the Eurasian Basin, with admixture of waters from the Canada Basin suggested by their higher silicate concentrations. Mid-depth eddies may transport anomalous properties into the central Arctic and create property gradients or fronts in mid-depth and deep waters. The complex topography of the Mendeleyev Ridge-Chukchi Plateau region also may assist spreading of water from the boundary into the interior. Atlantic layer characteristics in 1994 differed from previous general depictions. In particular the core temperatures at the Chukchi-Mendeleyev boundary were at least 0.2 degrees C warmer on average than indicated in earlier work. The recent warming at intermediate depth has resulted from inflow of Atlantic waters that have been cooled relatively little during their transit of the Norwegian Sea. (C) 1998 Elsevier Science Ltd. All rights reserved.